实战:使用 PyTorch 和 OpenCV 实现实时目标检测系统

本文介绍如何结合PyTorch和OpenCV实现实时目标检测系统。通过从视频源读取,加载预训练的YoloV5模型进行评分,使用OpenCV在帧上绘制检测框,最后将处理后的帧写入输出流。教程涵盖了从网络摄像头、YouTube视频到IP摄像头的输入,展示了Python在构建复杂视觉应用中的实用性。
摘要由CSDN通过智能技术生成

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

一、引言

自动驾驶汽车可能仍然难以理解人类和垃圾桶之间的区别,但这并没有使最先进的物体检测模型在过去十年中取得的惊人进步相去甚远。

将其与 OpenCV 等库的图像处理能力相结合,如今在数小时内构建实时对象检测系统原型要容易得多。在本指南中,我们将尝试向您展示如何开发用于简单对象检测应用程序的子系统,以及如何将所有这些组合在一起。


二、Python与C++

我知道你们中的一些人可能会想,为什么我们要使用Python,在某种程度上,它对于实时应用程序来说不是太慢了吗。

大多数计算重操作,如预测或图像处理,都是通过PyTrand和OpenCV来执行的,它们都使用C++在场景后面实现这些操作,因此,如果我们在这里使用C++或Python,则不会有太大的差别。


三、读取视频流

输入的视频源可以是任何内容,从网络摄像头读取,或解析现有视频,或从连接到网络的外部摄像头。在此示例中,我们将展示如何从 youtube 或网络摄像头读取视频流。


四、从YouTube读取

你们可能不想出去创建新视频,而是使用许多在线可用的视频。在这种情况下,你们可以从 youtube 读取视频流。

import cv2 # opencv2 package for python.
import pafy # pafy allows us to read videos from youtube.
URL = "https://www.youtube.com/watch?v=dQw4w9WgXcQ" #URL to parse
play = pafy.new(self._URL).streams[-1] #'-1' means read the lowest quality of video.
assert play is not None # we want to make sure their is a input to read.
stream = cv2.VideoCa
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值