详解Python文件: .py、.ipynb、.pyi、.pyc、​.pyd !

 
 
 
 
 
 
 
 

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

文章来源:麦叔编程

今天同事给我扔了一个.pyd文件,说让我跑个数据。然后我就傻了。。

不知道多少粉丝小伙伴会run .pyd代码文件?如果你也懵懵的,请继续往下读吧。。

今天科普下各类Python代码文件的后缀,给各位Python开发“扫扫盲”。

.py

最常见的Python代码文件后缀名,官方称Python源代码文件

不用过多解释了~

.ipynb

这个还是比较常见的,.ipynbJupyter Notebook文件的扩展名,它代表"IPython Notebook"。

8cbbd0ae675c289c49d498e246bd9efc.png

学过数据分析,机器学习,深度学习的同学一定不陌生!

.pyi

.pyi文件是Python中的类型提示文件,用于提供代码的静态类型信息。

一般用于帮助开发人员进行类型检查静态分析

示例代码:

hellp.pyi


def hello(name: str) -> None:
    print(f"hello {name}")

.pyi文件的命名约定通常与相应的.py文件相同,以便它们可以被自动关联在一起。

.pyc

.pycPython字节码文件的扩展名,用于存储已编译的Python源代码的中间表示形式,因为是二进制文件所以我们无法正常阅读里面的代码。

4f7725888c3e5a2ca79f83efa2c5a6c0.png

.pyc文件包含了已编译的字节码,它可以更快地被Python解释器加载和执行,因为解释器无需再次编译源代码。

.pyd

.pydPython扩展模块的扩展名,用于表示使用CC++编写的二进制Python扩展模块文件。

.pyd文件是编译后的二进制文件,它包含了编译后的扩展模块代码以及与Python解释器交互所需的信息。

此外,.pyd文件通过import语句在Python中导入和使用,就像导入普通的Python模块一样。

由于CC++的执行速度通常比纯Python代码快,可以使用扩展模块来优化Python代码的性能,尤其是对于计算密集型任务。

321044c274ca461c7289d4a0d4523f8e.png

.pyw

.pywPython窗口化脚本文件的扩展名。

它表示一种特殊类型的Python脚本文件,用于创建没有命令行界面(即控制台窗口)的窗口化应用程序。

一般情况下,运行Python脚本会打开一个命令行窗口,其中显示脚本输出和接受用户输入。但是,对于某些应用程序,如图形用户界面(GUI)应用程序,不需要命令行界面,而是希望在窗口中显示交互界面。这时就可以使用.pyw文件。

示例代码:

# click_button.pyw


import tkinter as tk


def button_click():
    label.config(text="Button Clicked!")


window = tk.Tk()
button = tk.Button(window, text="Click Me", command=button_click)
button.pack()


label = tk.Label(window, text="Hello, World!")
label.pack()


window.mainloop()

.pyx

.pyxCython源代码文件的扩展名。

Cython是一种编译型的静态类型扩展语言,它允许在Python代码中使用C语言的语法和特性,以提高性能并与C语言库进行交互。

我对比了下Cython与普通python的运行速度:

fb.pyx(需使用cythonize命令进行编译)

cdef int a, b, i


def fibonacci(n):
if n <= 0:
raise ValueError("n必须是正整数")


if n == 1:
return 0
elif n == 2:
return 1
else:
        a = 0
        b = 1
for i in range(3, n + 1):
            a, b = b, a + b
return b

run.py

import fb
import timeit


def fibonacci(n):
if n <= 0:
raise ValueError("n必须是正整数")


if n == 1:
return 0
elif n == 2:
return 1
else:
        a, b = 0, 1
for _ in range(3, n + 1):
            a, b = b, a + b
return b


# 纯Python版本
python_time = timeit.timeit("fibonacci(300)", setup="from __main__ import fibonacci", number=1000000)


# Cython版本
cython_time = timeit.timeit("fb.fibonacci(300)", setup="import fb", number=1000000)


print("纯Python版本执行时间:", python_time)
print("Cython版本执行时间:", cython_time)

得出结果:

纯Python版本执行时间: 12.391942400000516
Cython版本执行时间: 6.574918199999956

在这种计算密集任务情况下,Cython比普通Python效率快了近一倍。

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。


下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。


下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。


交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值