题目:DualCoOp++: Fast and Effective Adaptation to Multi-Label Recognition With Limited Annotations
DualCoOp++:一种快速高效的有限注释多标签识别方法
作者:Ping Hu;Ximeng Sun;Stan Sclaroff;Kate Saenko
摘要
在低标签状态下的多标签图像识别是一项极具挑战性和实际意义的任务。之前的工作主要集中在学习文本和视觉空间之间的对齐,以弥补图像标签的不足,但由于高质量多标签注释的缺乏,可能会导致精度下降。在这项研究中,我们利用了通过数百万辅助图像-文本对预训练的强大文本和视觉特征对齐能力。我们引入了一种高效的框架,称为证据引导的双上下文优

DualCoOp++是一种针对多标签图像识别的快速适应方法,尤其适用于有限注释的情况。它利用预训练的视觉语言模型,通过学习证据、正面和负面提示,实现更准确的类别识别。引入的证据引导区域特征聚合和赢家通吃正则化模块提高了区分相似类别的能力,同时避免了额外计算开销。在MS-COCO、VOC2007和NUS-WIDE等数据集上的实验表明,DualCoOp++在部分标签和零样本识别任务上均优于现有方法。
订阅专栏 解锁全文
1153

被折叠的 条评论
为什么被折叠?



