题目:BAL: Balancing Diversity and Novelty for Active Learning
平衡多样性和新颖性促进主动学习
作者:Jingyao Li; Pengguang Chen; Shaozuo Yu; Shu Liu; Jiaya Jia
源码链接: https://github.com/JulietLJY/BAL
摘要
主动学习的目标是在预定的标记预算内,通过策略性地标记数据集的一个子集来最大化性能。在本研究中,我们利用通过自监督学习获得的特征。我们引入了一个简单而有力的度量标准,称为Cluster Distance Difference (CDD),以识别多样化的数据。随后,我们提出了一个新的框架,称为Balancing Active Learning (BAL),它构建了自适应的子池,以平衡多样化和不确定的数据。我们的方法在广泛认可的基准测试上超越了所有已建立的主动学习方法,提高了1.20%。此外,我们评估了我们提出的框架在扩展设置下的有效性,包括更大和更小的标记预算。实验结果表明,当