TPAMI 2024 | 异构标签空间中迁移学习的选择性随机游走

题目:Selective Random Walk for Transfer Learning in Heterogeneous Label Spaces

异构标签空间中迁移学习的选择性随机游走

作者:Q. Xiao; Y. Zhang; Q. Yang


摘要

迁移学习已在不同场景中广泛应用,特别是在缺乏足够标记数据的情况下。然而,大多数现有的迁移学习方法都基于源域和目标域应完全或部分共享标签空间的假设,这极大地限制了其应用范围。在本文中,提出了一种用于异构标签空间迁移学习的选择性随机游走(SRW)方法,以充分利用未标记的辅助数据,这些数据充当知识从源域到目标域传递的桥梁。所提出的SRW方法可以基于随机游走技术明确识别源实例和目标实例之间的传递序列。由于并非所有由随机游走生成的传递序列对目标任务都是可信的,SRW方法可以自适应地学习加权传递序列。基于传递序列的权重,SRW方法通过强制传递序列中相邻的数据点相似,并使传递序列中的目标数据点由同一序列中的其他数据点表示来利用知识。实验表明,SRW方法在许多基准数据集内和跨越多个基准数据集构建的异构标签空间迁移学习任务中表现优于最先进的模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值