题目:Selective Random Walk for Transfer Learning in Heterogeneous Label Spaces
异构标签空间中迁移学习的选择性随机游走
作者:Q. Xiao; Y. Zhang; Q. Yang
摘要
迁移学习已在不同场景中广泛应用,特别是在缺乏足够标记数据的情况下。然而,大多数现有的迁移学习方法都基于源域和目标域应完全或部分共享标签空间的假设,这极大地限制了其应用范围。在本文中,提出了一种用于异构标签空间迁移学习的选择性随机游走(SRW)方法,以充分利用未标记的辅助数据,这些数据充当知识从源域到目标域传递的桥梁。所提出的SRW方法可以基于随机游走技术明确识别源实例和目标实例之间的传递序列。由于并非所有由随机游走生成的传递序列对目标任务都是可信的,SRW方法可以自适应地学习加权传递序列。基于传递序列的权重,SRW方法通过强制传递序列中相邻的数据点相似,并使传递序列中的目标数据点由同一序列中的其他数据点表示来利用知识。实验表明,SRW方法在许多基准数据集内和跨越多个基准数据集构建的异构标签空间迁移学习任务中表现优于最先进的模型。