论文信息
题目:Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation
实例一致性正则化用于半监督3D实例分割
作者:Yizheng Wu, Zhiyu Pan, Kewei Wang, Xingyi Li, Jiahao Cui, Liwen Xiao, Guosheng Lin, Zhiguo Cao
论文创新点
- 首次提出仅依赖实例一致性正则化进行半监督3D实例分割:以往的方法通常依赖于语义和实例伪标签的联合一致性正则化,但语义伪标签由于类别分布不平衡和类别间的自然混淆,往往引入大量噪声,导致自训练性能下降。本文通过观察3D实例在点云中不重叠且空间可分的特性,提出仅利用实例一致性正则化来提升半监督分割性能,避免了语义伪标签带来的噪声影响。
- 设计了一个并行的3D实例分割模型DKNet&