题目:Federated Learning of Generalized Linear Causal Networks
广义线性因果网络的联邦学习
作者:Qiaoling Ye; Arash A. Amini; Qing Zhou
摘要
因果发现,即从数据中推断变量之间的因果关系,是科学中的一个基本问题。如今,由于对数据隐私问题的日益关注,分布式数据收集、处理和存储发生了转变。为了满足分布式因果发现的迫切需求,我们提出了一种新的联合有向无环图(DAG)学习方法,称为分布式退火正则化似然分数(DARLS),用于从存储在多个客户端上的数据中学习因果图。DARLS模拟了一个退火过程来搜索拓扑排序的空间,其中与排序兼容的最优图形结构是通过分布式优化找到的。这种分布式优化依赖于本地客户端和中央服务器之间的多轮通信来估计图形结构。我们建立了它收敛到可以访问所有数据的预言机得到的解的保证。据我们所知,DARLS是第一个具有如此有限样本预言机保证的分布式学习方法来学习因果图。为了建立DARLS的一致性,我们还推导出了因果图参数化的新可识别性结果,这些结果可能具有独立的兴趣。通过广泛的模拟研究和现实世界的应用,我们展