TPAMI 2024 | 广义线性因果网络的联邦学习

题目:Federated Learning of Generalized Linear Causal Networks

广义线性因果网络的联邦学习

作者:Qiaoling Ye; Arash A. Amini; Qing Zhou


摘要

因果发现,即从数据中推断变量之间的因果关系,是科学中的一个基本问题。如今,由于对数据隐私问题的日益关注,分布式数据收集、处理和存储发生了转变。为了满足分布式因果发现的迫切需求,我们提出了一种新的联合有向无环图(DAG)学习方法,称为分布式退火正则化似然分数(DARLS),用于从存储在多个客户端上的数据中学习因果图。DARLS模拟了一个退火过程来搜索拓扑排序的空间,其中与排序兼容的最优图形结构是通过分布式优化找到的。这种分布式优化依赖于本地客户端和中央服务器之间的多轮通信来估计图形结构。我们建立了它收敛到可以访问所有数据的预言机得到的解的保证。据我们所知,DARLS是第一个具有如此有限样本预言机保证的分布式学习方法来学习因果图。为了建立DARLS的一致性,我们还推导出了因果图参数化的新可识别性结果,这些结果可能具有独立的兴趣。通过广泛的模拟研究和现实世界的应用,我们展

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值