论文信息
题目:Large-Scale Object Detection in the Wild With Imbalanced Data Distribution, and Multi-Labels
野外大规模不平衡数据分布及多标签的目标检测
作者:Cong Pan、Junran Peng、Xingyuan Bu、Zhaoxiang Zhang
论文创新点
- 设计并发 softmax 处理多标签问题。
- 提出软平衡采样与混合训练调度器解决标签不均衡。
- 统一软平衡采样和混合训练,并设计模型集成策略提升性能。
摘要
在深度学习时代,使用更多数据进行训练一直是提升性能最稳定、有效的方法。开放图像数据集(Open Images dataset)是目前最大的目标检测数据集,它为通用和复杂场景带来了重要机遇与挑战。然而,为管理庞大的数据规模,其采用的半自动收集和标注过程引发了与标签相关的问题,包括对象存在显式或隐式的