TPAMI 2024 | 野外大规模不平衡数据分布及多标签的目标检测

论文信息

题目:Large-Scale Object Detection in the Wild With Imbalanced Data Distribution, and Multi-Labels
野外大规模不平衡数据分布及多标签的目标检测
作者:Cong Pan、Junran Peng、Xingyuan Bu、Zhaoxiang Zhang

论文创新点

  1. 设计并发 softmax 处理多标签问题。
  2. 提出软平衡采样与混合训练调度器解决标签不均衡。
  3. 统一软平衡采样和混合训练,并设计模型集成策略提升性能。

摘要

在深度学习时代,使用更多数据进行训练一直是提升性能最稳定、有效的方法。开放图像数据集(Open Images dataset)是目前最大的目标检测数据集,它为通用和复杂场景带来了重要机遇与挑战。然而,为管理庞大的数据规模,其采用的半自动收集和标注过程引发了与标签相关的问题,包括对象存在显式或隐式的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值