OoD-Control: Generalizing Control in Unseen Environments
OoD-Control: 在陌生环境中泛化的控制
Nanyang Ye; Zhaoyu Zeng; Jundong Zhou; Lin Zhu; Yuxiao Duan; Yifei Wu; Junqi Wu; Haoqi Zeng; Qinying Gu; Xinbing Wang; Chenghu Zhou
摘要
在实际应用中,如无人机(UAV)飞行控制,泛化到分布外(OoD)数据是至关重要但具有挑战性的。以前的基于机器学习的控制方法在处理复杂真实环境方面显示出了希望,但在面对OoD场景时性能大幅下降,给无人机的稳定性和安全性带来风险。在本文中,我们发现在训练期间引入的随机噪声通过一个提出的功能优化框架意外地获得了理论保证的性能。更令人鼓舞的是,这个框架不涉及该领域常用的Lyapunov假设,使其应用更广泛。利用这个框架,我们引入了控制误差的上界。我们还证明了引入的随机噪声可以导致更低的OoD控制误差。基于我们的理论分析,我们进一步提出了OoD-Control来泛化在未见环境中的控制。数值实验表明,所提出的算法的优越性,超过了以前最先进的方法65%以上ÿ