TIV 2024 | MDFD2-DETR:一种基于多域特征分解与去冗余的实时复杂道路目标检测模型

论文信息

题目:MDFD2-DETR: A Real-Time Complex Road Object Detection Model Based on Multi-Domain Feature Decomposition and De-Redundancy
MDFD2-DETR:一种基于多域特征分解与去冗余的实时复杂道路目标检测模型
作者:Jia-wei Liu, Da Yang, Ting-wei Feng, Jun-jie Fu

论文创新点

  1. 构建复杂道路感知数据集SWJTU-100k:这是首个大规模路边视角的复杂交通场景数据集,包含10万个高质量、精确标注的图像,涵盖10种常见道路车辆类型,整合多样场景,且代表了中国特定交通环境。
  2. 提出多域特征分解与去冗余模块(MDFD):深入分析现有检测模型在复杂道路场景下的特征提取过程,发现并针对
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值