TPAMI 2024 | 迁移标注者和实例依赖的转移矩阵以实现从群体学习

题目:Transferring Annotator- and Instance-Dependent Transition Matrix for Learning From Crowds

迁移标注者和实例依赖的转移矩阵以实现从群体学习

作者:Shikun Li; Xiaobo Xia; Jiankang Deng; Shiming Ge; Tongliang Liu

源码链接: https://github.com/tmllab/TAIDTM


摘要

从人群学习描述了训练数据的注释是通过众包服务获得的。多个注释者各自完成了注释的一小部分,其中注释错误经常依赖于注释者。通过噪声转移矩阵对标签噪声生成过程进行建模是解决标签噪声的强大工具。在现实世界的众包场景中,噪声转移矩阵既依赖于注释者也依赖于实例。然而,由于注释者和实例依赖的转移矩阵(AIDTM)的高复杂性,注释稀疏性,即每个注释者只标记了一小部分实例,使得对AIDTM的建模非常具有挑战性。在没有先验知识的情况下,现有工作通过假设转移矩阵与实例无关或使用简单的参数化方法来简化问题,这失去了建模的普遍性。基于此&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值