题目:Transferring Annotator- and Instance-Dependent Transition Matrix for Learning From Crowds
迁移标注者和实例依赖的转移矩阵以实现从群体学习
作者:Shikun Li; Xiaobo Xia; Jiankang Deng; Shiming Ge; Tongliang Liu
源码链接: https://github.com/tmllab/TAIDTM
摘要
从人群学习描述了训练数据的注释是通过众包服务获得的。多个注释者各自完成了注释的一小部分,其中注释错误经常依赖于注释者。通过噪声转移矩阵对标签噪声生成过程进行建模是解决标签噪声的强大工具。在现实世界的众包场景中,噪声转移矩阵既依赖于注释者也依赖于实例。然而,由于注释者和实例依赖的转移矩阵(AIDTM)的高复杂性,注释稀疏性,即每个注释者只标记了一小部分实例,使得对AIDTM的建模非常具有挑战性。在没有先验知识的情况下,现有工作通过假设转移矩阵与实例无关或使用简单的参数化方法来简化问题,这失去了建模的普遍性。基于此&#