TPAMI 2024 | 混合精度神经网络框架的最新研究综述

论文信息

题目:A Review of State-of-the-Art Mixed-Precision Neural Network Frameworks
混合精度神经网络框架的最新研究综述
作者:Mariam Rakka, Mohammed E. Pramod Khargonekar, Fadi Kurdahi

论文创新点

  1. 收集、调查和总结早期和最近的关于MXPDNNs的工作;
  2. 通过评论每个编译框架的优缺点来比较不同的MXPDNN框架;
  3. 比较表现最佳的MXPDNNs与表现最佳的BNNs并讨论未来的研究方向。

摘要

混合精度深度神经网络(DNNs)为硬件部署提供了一种高效的解决方案,特别是在资源受限的情况下,同时保持模型的准确性。然而,鉴于模型、数据集和量化方案的广泛性,确定每层的理想位精度仍然是一个挑战,导致搜索空间巨大。近期文献针对这一挑战提出了几种有前景的框架。本文全面概述了现有研究中普遍存在的标准量化分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值