TPAMI 2024 | T2TD: 基于先验知识指导的文本到3D生成模型

论文信息

题目:T2TD: Text-3D Generation Model Based on Prior Knowledge Guidance
T2TD: 基于先验知识指导的文本到3D生成模型
作者:Weizhi Nie; Ruidong Chen; Weijie Wang; Bruno Lepri; Nicu Sebe

论文创新点

  • 1 提出了新颖的 3D 形状知识图谱: 本文首次提出了一个 3D 形状知识图谱,用于连接文本描述和 3D 模型之间的语义差距。通过该知识图谱,可以像人类一样保存和检索丰富且准确的先验知识,从而为文本到 3D 的生成过程提供重要支持。

  • 2 设计了新型的因果模型: 针对检索到的形状先验知识,本文设计了一种新型的因果模型,用于选择有用且相关的特征,同时移除无关的结构信息。这一模型有效提高了生成模型的特征质量,并为最终生成结果提供了更高的准确性。

  • 3 提出了信息

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值