ECCV 2024 | 高效频域图像去雨与对比正则化

论文信息

题目:Efficient Frequency-Domain Image Deraining with Contrastive Regularization
高效频域图像去雨与对比正则化
作者:Ning Gao, Xingyu Jiang, Xiuhui Zhang, and Yue Deng
源码:https://github.com/deng-ai-lab/FADformer

论文创新点

  1. 提出了一种高效的频率感知去雨框架(FADformer):作者提出了一个名为FADformer的新型框架,该框架通过在频域中捕获特征来实现高效的雨迹去除,这与仅依赖于空间域特征的方法相比,提供了一种新的视角和解决方案。
  2. 构建了融合傅里叶卷积混合器(FFCM):FADformer框架中的关键组件之一,FFCM&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值