ECCV 2024 | HiDiffusion: 解锁预训练扩散模型中的高分辨率创造力与效率

论文信息

题目:HiDiffusion: Unlocking Higher-Resolution Creativity and Efficiency in Pretrained Diffusion Models
HiDiffusion: 解锁预训练扩散模型中的高分辨率创造力与效率
Shen Zhang, Zhaowei Chen, Zhenyu Zhao, Yuhao Chen, Yao Tang, Jiajun Liang

论文创新点

  1. 分辨率感知U-Net(RAU-Net):作者提出了一种新的网络结构RAU-Net,通过动态调整特征图大小来解决高分辨率图像生成中的对象重复问题。RAU-Net包含分辨率感知下采样器(RAD)和分辨率感知上采样器(RAU),能够有效减少深层块中的特征重复,从而生成更合理的结构。
  2. 改进的移
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值