TPAMI 2024 | 基于反对抗样本的对抗训练(二)

F. 总结

作者的理论分析全面揭示了在四种典型学习场景下,扰动方向和范围对鲁棒模型的泛化性、鲁棒性和公平性有显著影响。主要发现总结如下:

  1. 与标准对抗训练相比,采用不同扰动范围的对抗训练增强了类别之间的公平性,并在鲁棒性、准确性和公平性之间实现了更好的平衡,如推论1、推论3和推论6所示。
  2. 与仅使用对抗样本相比,在训练中结合不同扰动范围的对抗样本和反对抗样本在鲁棒性、准确性和公平性之间实现了更优的平衡,如推论2、推论4、推论5和推论7所示。
  3. 组合策略在实现相同性能时比仅使用对抗样本所需的扰动范围更小,使其成为一种更有效的方法。现有研究忽略了有价值的反对抗样本。因此,作者提出了一个新的优化目标,该目标结合了不同扰动范围的对抗样本和反对抗样本。

IV. 方法

受理论发现的启发,作者首先建立了一个新的目标函数,在训练中为每个样本结合不同扰动范围的对抗样本和反对抗样本。元学习和强化学习通常用于样本加权和扰动的参数选择。相应地,作者分别提出了基于元学习和强化学习的两种方法来解决优化问题。它们的结构如图7所示。

最外层的优化目标是最小化分类器的损失。内层优化目标旨在分别生成对抗样本和反对抗样本,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值