NIPS 2024 | 生成式半监督图异常检测

论文信息

题目:Generative Semi-supervised Graph Anomaly Detection
生成式半监督图异常检测
作者:Hezhe Qiao, Qingsong Wen, Xiaoli Li, Ee-Peng Lim, Guansong Pang
源码:https://github.com/mala-lab/GGAD

论文创新点

  1. 提出了一种新的半监督图异常检测场景:作者探索了一种实用且未充分探索的半监督图异常检测(GAD)场景,其中部分节点已知为正常节点。
  2. 引入了一种生成式图异常检测方法(GGAD):作者提出了一种新的生成式GAD方法,称为GGAD,旨在生成伪异常节点(离群节点),这些节点在图结构和特征表示上都与真实异常节点相似。这些离群节点作为负样本,用于训练判别式单类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值