论文信息
题目:Generative Semi-supervised Graph Anomaly Detection
生成式半监督图异常检测
作者:Hezhe Qiao, Qingsong Wen, Xiaoli Li, Ee-Peng Lim, Guansong Pang
源码:https://github.com/mala-lab/GGAD
论文创新点
- 提出了一种新的半监督图异常检测场景:作者探索了一种实用且未充分探索的半监督图异常检测(GAD)场景,其中部分节点已知为正常节点。
- 引入了一种生成式图异常检测方法(GGAD):作者提出了一种新的生成式GAD方法,称为GGAD,旨在生成伪异常节点(离群节点),这些节点在图结构和特征表示上都与真实异常节点相似。这些离群节点作为负样本,用于训练判别式单类