TIM 2025 | 通过残差特征聚合模块的双分支知识蒸馏用于异常分割

论文信息

题目:Dual-Branch Knowledge Distillation via Residual Features Aggregation Module for Anomaly Segmentation
通过残差特征聚合模块的双分支知识蒸馏用于异常分割
作者:You Zhou, Zihao Huang, Deyu Zeng, Yanyun Qu, Zongze Wu
源码链接:https://github.com/EWAN9709/DBKD

论文创新点

  1. 双分支知识蒸馏框架:论文提出了一个双分支知识蒸馏(DBKD)框架,通过引入多尺度输入重建分支多尺度特征信息提取分支,增强了模型对异常样本的表示能力。
  2. 残差特征聚合模块࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值