TMI 2024 | 基于排名边界的含噪声标签的组织病理学图像分类

论文信息

题目:Histopathology Image Classification With Noisy Labels via The Ranking Margins
基于排名边界的含噪声标签的组织病理学图像分类
作者:Zhijie Wen , Haixia Wu, and Shihui Ying

论文创新点

    1. 基于边际的排名函数:本研究提出了一个新颖的排名函数,该函数通过测量样本与决策边界之间的“距离”来区分困难样本和噪声样本。这一方法不仅能够准确测量样本的训练优先级,而且不需要额外的干净数据集。
    1. 三阶段训练策略:所提出的方法包括三个阶段——热身阶段、主要训练阶段和微调阶段。这种分阶段的训练策略有助于逐步提高模型的鲁棒性和准确性。
    1. 标签校正机制:在主要训练阶段,通过利用前一个epoch的分
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值