TPAMI 2024 | 基于反对抗样本的对抗训练(一)

论文信息

题目:Adversarial Training With Anti-Adversaries
基于反对抗样本的对抗训练
作者:Xiaoling Zhou, Ou Wu, Nan Yang
源码链接:

论文创新点

  1. 首次结合不同扰动范围的对抗与反对抗样本训练,理论分析其在多种场景下对模型的影响。
  2. 提出新目标函数,用元学习和强化学习确定样本扰动策略。
  3. 从正则化解释组合策略,实验证明方法能提升模型性能与公平性。

摘要

对抗训练在提高深度神经网络的鲁棒性方面很有效。然而,现有研究在模型的鲁棒性、泛化性和公平性方面仍存在显著缺陷。在本研究中,作者从理论和实践两个角度验证了不同扰动方向(即对抗扰动和反对抗扰动)以及扰动范围的重要性。在更普遍的扰动范围内,即不同样本可以有不同的扰动方向和变化的扰动范围,从理论上探究了对抗训练对深度学习模型在公平性、鲁棒性和泛化性方面的影响。理论探索表明,与标准对抗训练相比,在训练中结合不同范围的对抗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值