TPAMI 2025 | 用于人物图像生成的增强多尺度交叉注意力机制

论文信息

题目:Enhanced Multi-Scale Cross-Attention for Person Image Generation
用于人物图像生成的增强多尺度交叉注意力机制
作者:Hao Tang, Ling Shao, Nicu Sebe, Luc Van Gool

论文创新点

  1. 提出新型网络框架:作者提出了**XingGAN和XingGAN++**两种新型网络框架用于人物图像生成任务。XingGAN由一个Xing生成器、一个形状引导判别器和一个外观引导判别器组成,其生成器包含SA分支、AS分支和协同注意力融合模块;XingGAN++在XingGAN基础上进行改进,包含三个新的贡献,进一步提升了性能。
  2. 设计新型模块:提出了SA和AS模块,通过交叉操作有效传递和更新人物形状和外观模态,实现相互改进,提升最终人物图像的质量;提出两种新型多尺度交叉注意力模块(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值