论文信息
题目:Generalized Time Warping Invariant Dictionary Learning for Time Series Classification and Clustering
用于时间序列分类和聚类的广义时间规整不变字典学习
源码:Ruiyu Xu, Chao Wang, Yongxiang Li, Jianguo Wu
论文创新点
- 提出新的字典学习框架:作者提出了广义时间规整不变字典学习(GTWIDL)框架,将时间规整算子表示为连续且无约束的规整路径,解决了传统基于动态时间规整(DTW)方法的局限性,有助于多维时间序列数据的联合对齐。
- 开发高效优化算法:设计了一种基于块坐标下降(BCD)的高效优化算法,能够联合更新稀疏系数、字典和规整算子。