TPAMI 2025 | 用于平衡行人属性识别的异构特征重采样

论文信息

题目:Heterogeneous Feature Re-sampling for Balanced Pedestrian Attribute Recognition
用于平衡行人属性识别的异构特征重采样
作者:Yibo Zhou, Bo Li, Hai-Miao Hu, Xiaokang Zhang, Dongping Zhang, Hanzi Wang

论文创新点

  1. 提出FRDL实现标签平衡学习:论文提出特征重采样分离学习(FRDL),通过在倒数第二层特征空间进行标签平衡重采样,设计双分类器训练流程。
  2. 引入GOAT解决FRDL局限性:为缓解FRDL存在的特征噪声和语义不平衡问题,提出梯度导向增强变换(GOAT)。该方法从贝叶斯角度出发,基于随机梯度下降,实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值