医图论文 MIA 2025 | 基于知识驱动的多图卷积网络用于脑网络分析和潜在生物标志物发现

论文信息

题目: Knowledge-driven multi-graph convolutional network for brain network analysis and potential biomarker discovery
基于知识驱动的多图卷积网络用于脑网络分析和潜在生物标志物发现
作者:Xianhua Zeng, Jianhua Gong, Weisheng Li, Zhuoya Yang
源码:https://github.com/GN-gjh/KMGCN

论文创新点

  1. 提出端到端多图神经网络模型:论文提出了一种名为KMGCN的端到端多图神经网络模型,该模型创新性地同时整合个体图和群体图,用于全面的脑网络分析,既能实现脑部疾病诊断,又能发现潜在生物标志物。
  2. 采用双驱动个体多图构建法ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值