医图论文 MIA 2024 | SFPL: 针对不平衡医学图像分类的样本特异性细粒度原型学习

论文信息

题目:SFPL: Sample-specific fine-grained prototype learning for imbalanced medical image classification
SFPL: 针对不平衡医学图像分类的样本特异性细粒度原型学习
作者:Yongbei Zhu, Shuo Wang, He Yu, Weimin Li, Jie Tian

论文创新点

  1. 首次提出细粒度原型方式描述类内异质性:本文首次提出使用细粒度原型来描述不平衡医学图像分类中的类内异质性。

  2. 统一框架集成特征学习和分类器学习:提出了一种统一的框架,将特征学习和分类器学习集成在一起,而不是常用的逐步或渐进学习策略。

  3. 实时更新细粒度原型:提出了一种实时更新方法,在训练过程中自适应地更新细粒度原型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值