论文信息
题目:SFPL: Sample-specific fine-grained prototype learning for imbalanced medical image classification
SFPL: 针对不平衡医学图像分类的样本特异性细粒度原型学习
作者:Yongbei Zhu, Shuo Wang, He Yu, Weimin Li, Jie Tian
论文创新点
-
首次提出细粒度原型方式描述类内异质性:本文首次提出使用细粒度原型来描述不平衡医学图像分类中的类内异质性。
-
统一框架集成特征学习和分类器学习:提出了一种统一的框架,将特征学习和分类器学习集成在一起,而不是常用的逐步或渐进学习策略。
-
实时更新细粒度原型:提出了一种实时更新方法,在训练过程中自适应地更新细粒度原型。