奇异值分解--SVD

与特征分解不同,SVD分解不要求方阵,假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:

 其中U是一个m x m的矩阵,Σ是一个m x n的矩阵,除了主对角线上的元素以外全为0 ,主对角线上的每个元素都称为奇异值,V是一 个n x n的矩阵。U和V都是酉矩阵。

将A的转置和A做矩阵乘法,那么会得到n X n的一个方阵AT A。既然AT A是方阵,那么我们就可以进行特征分解,

可见特征值矩阵等于奇异值矩阵的平方

本质矩阵E的分解--SVD分解

本质矩阵E的特性:一个3×3的矩阵是本质矩阵的充要条件是它的奇异值中有两个相等而第三个是0

【定理】一实三阶矩阵 E 能分解成一个反对称矩阵T 和一个旋转矩阵 R 的乘积 TR,当且仅当它有一个奇异值为零,另两个奇异值互相相等。

 

 

 

重构的点 X 同时在两个摄像机的前面的情形在四个可能解中仅为一个.这样一来只要用一个点作测试,验证它是否在两个摄像机前面,就足以从四个不同解中确定一个作为摄像机矩阵 。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值