与特征分解不同,SVD分解不要求方阵,假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:
其中U是一个m x m的矩阵,Σ是一个m x n的矩阵,除了主对角线上的元素以外全为0 ,主对角线上的每个元素都称为奇异值,V是一 个n x n的矩阵。U和V都是酉矩阵。
将A的转置和A做矩阵乘法,那么会得到n X n的一个方阵AT A。既然AT A是方阵,那么我们就可以进行特征分解,
可见特征值矩阵等于奇异值矩阵的平方
与特征分解不同,SVD分解不要求方阵,假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:
其中U是一个m x m的矩阵,Σ是一个m x n的矩阵,除了主对角线上的元素以外全为0 ,主对角线上的每个元素都称为奇异值,V是一 个n x n的矩阵。U和V都是酉矩阵。
将A的转置和A做矩阵乘法,那么会得到n X n的一个方阵AT A。既然AT A是方阵,那么我们就可以进行特征分解,
可见特征值矩阵等于奇异值矩阵的平方