交叉熵损失与二元交叉熵损失:区别、联系及实现细节

在机器学习和深度学习中,交叉熵损失(Cross-Entropy Loss)和二元交叉熵损失(Binary Cross-Entropy Loss)是两种常用的损失函数,它们在分类任务中发挥着重要作用。本文将详细介绍这两种损失函数的区别和联系,并通过具体的代码示例来说明它们的实现细节。

交叉熵损失(Cross-Entropy Loss)常用于多类分类问题,即每个样本只能属于一个类别,但总类别数量较多。例如,在手写数字识别中,一个图片只能代表一个数字(0-9)。

在 PyTorch 中,你可以使用 torch.nn.CrossEntropyLoss 作为多类分类的交叉熵损失函数。这个损失函数结合了 Softmax 层和交叉熵损失,可以更稳定地处理数值问题。我们使用MNIST数据集作为示例,这是一组手写数字(0-9)的图片,每个图片属于一个类别,代码如下。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# 设置超参数
batch_size = 64
learning_rate = 0.001
num_epochs = 5

# 定义数据转换
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])

# 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)

train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

# 定义模型
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
        self.fc1 = nn.Linear(64 * 7 * 7, 128)
        self.fc2 = nn.Linear(128, 10)
        self.pool = nn.MaxPool2d(2)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 64 * 7 * 7)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型和损失函数
model = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# 训练模型
for epoch in range(num_epochs):
    model.train()
    for images, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
    print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

# 测试模型
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
    print(f'Accuracy: {100 * correct / total:.2f}%')

二元交叉熵损失(Binary Cross-Entropy Loss)常用于多标签分类问题,即每个样本可以属于多个类别。例如,在多标签图像分类中,一个图片可以同时包含多种物体(猫、狗、车等)。

 

在 PyTorch 中,你可以使用 torch.nn.BCEWithLogitsLoss 作为二元交叉熵损失函数。这个损失函数结合了 Sigmoid 层和二元交叉熵损失,可以更稳定地处理数值问题。

为了演示多标签分类,我们假设有一个自定义的数据集,每个样本可以同时属于多个类别。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np

# 自定义数据集
class MultiLabelDataset(Dataset):
    def __init__(self, num_samples, num_features, num_classes):
        self.num_samples = num_samples
        self.num_features = num_features
        self.num_classes = num_classes
        self.data = np.random.randn(num_samples, num_features).astype(np.float32)
        self.labels = np.random.randint(0, 2, (num_samples, num_classes)).astype(np.float32)

    def __len__(self):
        return self.num_samples

    def __getitem__(self, idx):
        sample = self.data[idx]
        label = self.labels[idx]
        return sample, label

# 设置超参数
num_samples = 1000
num_features = 20
num_classes = 5
batch_size = 64
learning_rate = 0.001
num_epochs = 5

# 创建数据集和数据加载器
dataset = MultiLabelDataset(num_samples, num_features, num_classes)
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

# 定义模型
class SimpleMLP(nn.Module):
    def __init__(self, input_size, num_classes):
        super(SimpleMLP, self).__init__()
        self.fc1 = nn.Linear(input_size, 128)
        self.fc2 = nn.Linear(128, num_classes)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = torch.sigmoid(self.fc2(x))
        return x

# 实例化模型和损失函数
model = SimpleMLP(num_features, num_classes)
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# 训练模型
for epoch in range(num_epochs):
    model.train()
    for samples, labels in data_loader:
        optimizer.zero_grad()
        outputs = model(samples)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
    print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

# 测试模型
model.eval()
with torch.no_grad():
    total_loss = 0
    for samples, labels in data_loader:
        outputs = model(samples)
        loss = criterion(outputs, labels)
        total_loss += loss.item()
    print(f'Test Loss: {total_loss / len(data_loader):.4f}')

通过本文的介绍和代码示例,希望读者能更好地理解这两种损失函数的区别与联系,并能在实际项目中正确选择和应用它们。

  • 11
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值