交叉熵损失与二元交叉熵损失:区别、联系及实现细节

在机器学习和深度学习中,交叉熵损失(Cross-Entropy Loss)和二元交叉熵损失(Binary Cross-Entropy Loss)是两种常用的损失函数,它们在分类任务中发挥着重要作用。本文将详细介绍这两种损失函数的区别和联系,并通过具体的代码示例来说明它们的实现细节。

交叉熵损失(Cross-Entropy Loss)常用于多类分类问题,即每个样本只能属于一个类别,但总类别数量较多。例如,在手写数字识别中,一个图片只能代表一个数字(0-9)。

在 PyTorch 中,你可以使用 torch.nn.CrossEntropyLoss 作为多类分类的交叉熵损失函数。这个损失函数结合了 Softmax 层和交叉熵损失,可以更稳定地处理数值问题。我们使用MNIST数据集作为示例,这是一组手写数字(0-9)的图片,每个图片属于一个类别,代码如下。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# 设置超参数
batch_size 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值