YOLOV5 TensorRT部署 BatchedNMS(engine模型推理)(下)

本文档介绍如何在王新宇代码基础上改进YOLOV5的TensorRT部署,专注于BatchedNMS的实现。通过修改yolov5.cpp的全局变量和内存管理,以及在yololayer.h中调整模型尺寸和类别数,以提高推理速度并避免坐标越界问题。
摘要由CSDN通过智能技术生成

主要是在王新宇代码的基础上改进,引入对BatchedNMS的解码

1. 修改yolov5.cpp

首先增加全局变量,名字根据转onnx时修改的节点名字来,查看onnx文件可以看到,顺序不要弄错。
在这里插入图片描述

const char *INPUT_NAME = “images”;
const char *OUTPUT_KTOP_NAME = “Ktop”;
const char *OUTPUT_BOXEX_NAME = “nmsBoxes”;
const char *OUTPUT_SCORE_NAME = “nmsScore”;
const char *OUTPUT_CLS_NAME = “nmsCls”;

在这里插入图片描述修改cuda推理时的内存节点,采用指针引用的方式,减少内存拷贝过程,加快推理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值