深度学习算法论文总结之SPPNet和ResNet

本文主要记录博主阅读的深度学习论文后的总结
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
论文地址:https://arxiv.org/abs/1406.4729
传统的CNN算法包含两部分,卷积层和全连接层。卷积层并不需要固定的输入,但是全连接层需要一开始就设置好参数大小,导致CNN算法只能处理固定尺寸的图片(如AlexNet,224 x 224)。不幸的是,绝大部分的图片的尺寸不是统一的,为解决这个问题,通常使用的方法是cropping(裁剪)或者warping(变形),如图所示。
在这里插入图片描述
但是,这两种方法势必会影响到分类或者检测的效果。为了使得模型能够训练任意大小的图片,作者提出了SPPNet,在卷积层和全连接层之间增加一个Spp层,使得无论卷积层的输出特征图尺寸为多少,经过SPP层后,全连接层的输入特征图尺寸为固定值,SPPNet结构图如下所示
在这里插入图片描述在SPP层中,将特征图图转化成固定n

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴天stick

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值