凸优化总结

凸集

仿射集合和凸集

直线与线段

y = θ x 1 + ( 1 − θ ) x 2 { θ ∈ [ 0 , 1 ] 线段 θ ∈ R , 直线 y=\theta x_1 +(1-\theta)x_2 \begin{cases} \theta \in [0,1] &\text{线段} \\ \theta \in R, &\text{直线} \end{cases} y=θx1+(1θ)x2{θ[0,1]θR,线段直线

仿射集合

集合 C C C中连接任意两点的直线仍然在 C C C中,则 C C C是一个仿射集,即 C ⊆ R n , ∀ x 1 , x 2 ∈ C C \subseteq \pmb R^n,\forall x_1,x_2 \in C CRn,x1,x2C,有
θ x 1 + ( 1 − θ ) x 2 ∈ C , θ ∈ R \theta x_1 + (1-\theta )x_2 \in C,\theta \in R θx1+(1θ)x2C,θR

  • θ 1 x 1 + ⋯ + θ k x k , ∑ i = 1 k θ i = 1 \theta_1x_1+ \cdots + \theta_k x_k,\sum_{i=1}^k \theta_i=1 θ1x1++θkxk,i=1kθi=1称为 x 1 , ⋯   , x k x_1,\cdots,x_k x1,,xk的仿射组合,仿射集合包含其中任意点的仿射组合
  • 由集合 C C C中点的所有仿射组合组成的集合称为 C C C的仿射包
    aff  C = { θ 1 x 1 + ⋯ + θ k x k ∣ x i ∈ C , ∑ i = 1 k θ k = 1 } \text {aff} \ C = \{\theta_1x_1+ \cdots+\theta_kx_k \mid x_i \in C,\sum_{i=1}^k \theta_k=1\} aff C={θ1x1++θkxkxiC,i=1kθk=1}
    仿射包是包含 C C C的最小的仿射组合。
  • 仿射集合可以表示为它的一个子空间加上一个偏移。
例子
  • 线性方程组的解集 C = { x ∣ A x = b } C=\{x\mid Ax=b\} C={xAx=b}是一个仿射集合

仿射维数与相对内部

集合 C C C的仿射维数为其仿射包的维数。
集合 C C C的相对内部为 aff  C \text{aff} \ C aff C的内部,记为 relint  C \text{relint} \ C relint C
relint  C = { x ∈ C ∣ B ( x , r ) ∩ aff  C ⊆ C , r > 0 } \text{relint} \ C = \{x\in C \mid B(x,r) \cap \text{aff} \ C \subseteq C ,r>0 \} relint C={xCB(x,r)aff CC,r>0}
集合 C C C的相对边界为 cl  C \ relint  C \text{cl} \ C \backslash \text{relint} \ C cl C\relint C cl  C \text{cl} \ C cl C C C C的闭包

凸集

如果集合 C C C中任意两点的线段仍然在 C C C中,则 C C C被称为凸集,即 ∀ x 1 , x 2 ∈ C \forall x_1,x_2 \in C x1,x2C,有
θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1 + (1-\theta)x_2 \in C θx1+(1θ)x2C

  • θ 1 x 1 + ⋯ + θ k x k , ∑ i = 1 k θ i = 1 , θ i ≥ 0 \theta_1x_1+\cdots+\theta_kx_k,\sum_{i=1}^k \theta_i=1,\theta_i\geq0 θ1x1++θkxk,i=1kθi=1,θi0为点 x 1 , ⋯   , x k x_1,\cdots,x_k x1,,xk的一个凸组合
  • 一个集合是凸集等价于集合包含其中所有点的凸组合
  • 集合 C C C中所有点的凸组合的集合被称为凸包,记为 conv C \text{conv} C convC
    conv  C = { θ 1 x 1 + ⋯ + θ k x k ∣ x i ∈ C , θ i ≥ 0 , 1 T θ = 1 } \text{conv} \ C = \{\theta_1x_1+\cdots+\theta_kx_k \mid x_i \in C,\theta_i\geq0,\pmb 1^T \theta =1\} conv C={θ1x1++θkxkxiC,θi0,1Tθ=1}
    凸包是包含集合 C C C的最小凸集

∀ x ∈ C , θ ≥ 0 \forall x\in C,\theta \geq0 xC,θ0,都有 θ x ∈ C \theta x \in C θxC,则集合 C C C是锥或非负齐次。如果集合 C C C是锥,并且是凸的,则称 C C C为凸锥,即 ∀ x 1 , x 2 ∈ C , θ 1 , θ 2 ≥ 0 \forall x_1,x_2 \in C,\theta_1,\theta_2 \geq0 x1,x2C,θ1,θ20,有
θ 1 x 1 + θ 2 x 2 ∈ C \theta_1x_1+\theta_2x_2 \in C θ1x1+θ2x2C
几何上是一个二维的扇形,以0为顶点。

  • θ 1 x 1 + ⋯ + θ k x k , θ i ≥ 0 \theta_1x_1+\cdots+\theta_kx_k,\theta_i\geq0 θ1x1++θkxk,θi0称为 x 1 , ⋯   , x k x_1,\cdots,x_k x1,,xk的锥组合
  • 集合 C C C是凸锥的充要条件是它包含其元素的所有锥组合
  • 集合C的锥包是C中元素的所有锥组合的集合,是包含C的最小的凸锥

重要例子

  • 空集、任意一个点、全空间 R n \pmb R^n Rn都是 R n \pmb R^n Rn的仿射子集
  • 任意直线是仿射的。如果直线过零点,则是子空间,也是凸锥
  • 一条线段是凸的,但不是仿射的
  • 一条射线是凸的,但不是仿射的,如果其起点为零点,则是凸锥
  • 任意子空间是仿射的、凸锥

超平面与半空间

超平面是具有下面形式的集合
{ x ∣ a T x = b } \{x \mid a^Tx=b\} {xaTx=b}
其中 a ∈ R n , a ≠ 0 , b ∈ R a\in\pmb R^n,a\neq 0,b\in R aRn,a=0,bR

  • 超平面是仿射集合
  • 几何上代表了法线方向为 a a a,偏移为 b b b的超平面,可以表示成 { x ∣ a T ( x − x 0 ) = 0 } \{x\mid a^T(x-x_0)=0\} {xaT(xx0)=0}
    一个超平面将 R n \pmb R^n Rn划分为两个半空间,半空间是具有下列形式的集合
    { x ∣ a T x ≤ b } \{x \mid a^Tx\leq b \} {xaTxb}
  • 半空间是凸的
  • 几何上半空间由 x 0 x_0 x0加上任意与向量 a a a呈钝角的向量组成

Euclid球和椭球

R n \pmb R^n Rn中的空间 E u c l i d Euclid Euclid球具有下面的形式
B ( x c , r ) = { x ∣ ∥ x − x c ∥ 2 ≤ r } = { x ∣ ( x − x c ) T ( x − x c ) ≤ r 2 } B(x_c,r) = \{x\mid \parallel x- x_c \parallel_2 \leq r\} = \{x\mid (x-x_c)^T(x-x_c) \leq r^2\} B(xc,r)={x∣∥xxc2r}={x(xxc)T(xxc)r2}
E u c l i d Euclid Euclid球表示为距离球心 x c x_c xc不超过 r r r的所有点组成,也可以表示为
B ( x c , r ) = { x c + r u ∣ ∥ u ∥ 2 ≤ 1 } B(x_c,r) = \{x_c+ru \mid \parallel u \parallel_2 \leq1\} B(xc,r)={xc+ru∣∥u21}
相关的凸集椭球具有如下形式
ε = { x ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } \varepsilon = \{x\mid (x-x_c)^T P^{-1}(x-x_c) \leq 1\} ε={x(xxc)TP1(xxc)1}
其中 P = P T ≻ 0 P=P^T \succ0 P=PT0,即 P P P是对称正定矩阵。
椭球的半轴长度由 λ i \sqrt{\lambda_i} λi 给出,它的另一个常用的表示形式是
ε = { x c + A u ∣ ∥ u ∥ 2 ≤ 1 } \varepsilon = \{x_c+Au \mid \parallel u \parallel_2 \leq 1\} ε={xc+Au∣∥u21}
其中 A = P 1 2 A = P^{\frac12} A=P21

范数锥

范数锥是集合
C = { ( x , t ) ∣ ∥ x ∥ ≤ t } ⊆ R n + 1 C = \{(x,t) \mid \parallel x \parallel \leq t\} \subseteq\pmb R^{n+1} C={(x,t)∣∥x∥≤t}Rn+1
二阶锥是由 E u c l i d Euclid Euclid范数定义的范数锥,也叫二次锥或 L o r e n t z Lorentz Lorentz锥或冰激凌锥。
C = { ( x , t ) ∈ R n + 1 ∣ ∥ x ∥ 2 ≤ t } C=\{(x,t)\in R^{n+1} \mid \parallel x \parallel_2 \leq t\} C={(x,t)Rn+1∣∥x2t}

多面体

多面体被定义为有限个线性等式和不等式的解集,
P = { x ∣ a j T x ≤ b j , j = 1 , ⋯   , m , c j T x = d j , j = 1 , ⋯   , p } \mathcal P = \{x \mid a_j^Tx\leq b_j,j=1,\cdots,m,c_j^Tx = d_j,j=1,\cdots,p\} P={xajTxbj,j=1,,m,cjTx=dj,j=1,,p}
多面体是有限个半空间和超平面的交集。仿射集合都是多面体。也可以使用紧凑表达式表示
P = { x ∣ A x ⪯ b , C x = d } \mathcal P = \{x \mid Ax \preceq b,Cx = d\} P={xAxb,Cx=d}

单纯性

单纯性是一类重要的多面体。设 k + 1 k+1 k+1个点 v 0 , ⋯   , v k ∈ R n v_0,\cdots,v_k\in R^n v0,,vkRn仿射独立,即 v 1 − v 0 , ⋯   , v k − v 0 v_1-v_0,\cdots,v_k-v_0 v1v0,,vkv0线性独立,那么这些点决定了一个单纯性,
C = c o n v { v 0 , ⋯   , v k } = { θ 0 v 0 + ⋯ + θ k v k ∣ θ ⪰ 0 , 1 T θ = 1 } C = conv \{v_0,\cdots,v_k\} = \{\theta_0v_0 + \cdots+\theta_kv_k\mid \theta \succeq 0,\pmb 1^T\theta=1\} C=conv{v0,,vk}={θ0v0++θkvkθ0,1Tθ=1}
单纯形的仿射维数为 k k k,因此也成为 R n R^n Rn空间的 k k k维单纯形
fixme多面体的凸包描述

半正定锥

S n = { X ∈ R n × n ∣ X = X T } S + n = { X ∈ S n ∣ X ⪰ 0 } S + + n = { X ∈ S n ∣ X ≻ 0 } \begin{aligned} &S^n = \{X \in R^{n \times n} \mid X = X^T\}\\ &S^n_+ = \{X \in S^{n} \mid X \succeq 0\}\\ &S^n_{++} = \{X \in S^{n} \mid X \succ 0\} \end{aligned} Sn={XRn×nX=XT}S+n={XSnX0}S++n={XSnX0}

保凸运算

交集

交集运算是保凸的

仿射函数

函数 f : R n → R m f:R^n \rightarrow R^m f:RnRm是仿射的,如果它是一个线性函数和一个常数的和,即具有 f ( x ) = A x + b f(x) = Ax+b f(x)=Ax+b的形式,其中 A ∈ R m × n , b ∈ R m A \in R^{m \times n},b\in R^m ARm×n,bRm。假设 S ⊆ R n S \subseteq R^n SRn是凸的,并且 f : R n → R m f:R^n \rightarrow R^m f:RnRm是仿射函数。那么, S S S f f f下的像
f ( S ) = { f ( x ) ∣ x ∈ S } f(S) = \{f(x) \mid x \in S\} f(S)={f(x)xS}
是凸的。类似的没如果 f : R k → R n f:R^k \rightarrow R^n f:RkRn是仿射函数,那么 S S S f f f下的原象
f − 1 ( S ) = { x ∣ f ( x ) ∈ S } f^{-1}(S)=\{x \mid f(x) \in S\} f1(S)={xf(x)S}
是凸的
EXAMPLE:

  • 伸缩和平移: α S , S + a \alpha S,S+a αS,S+a
  • 两个集合的和: S 1 + S 2 = { x + y ∣ x ∈ S 1 , y ∈ S 2 } S_1+S_2 = \{x+y \mid x\in S_1,y \in S_2\} S1+S2={x+yxS1,yS2}
  • 两个集合的直积\Cartesian乘积: S 1 × S 2 = { ( x 1 , x 2 ) ∣ x 1 ∈ S 1 , x 2 ∈ S 2 } S_1 \times S_2 = \{(x_1,x_2) \mid x_1 \in S_1,x_2 \in S_2\} S1×S2={(x1,x2)x1S1,x2S2}
  • 两个集合的部分和: S = { ( x , y 1 + y 2 ) ∣ ( x , y 1 ) ∈ S 1 , ( x , y 2 ) ∈ S 2 } S = \{(x,y_1+y_2) \mid (x,y_1)\in S_1,(x,y_2) \in S_2\} S={(x,y1+y2)(x,y1)S1,(x,y2)S2}

线性分式及透视函数

透视函数

定义 P : R n + 1 → R n , P ( z , t ) = z / t P:R^{n+1} \rightarrow R^n,P(z,t) = z/t P:Rn+1Rn,P(z,t)=z/t为透视函数,其定义域为 dom  P = R n × R + + \text{dom} \ P = R^n \times R_{++} dom P=Rn×R++。透视函数对向量进行伸缩,或称为规范化,使得最后一维分量为1并舍弃。透视函数是保凸的。

线性分式函数

线性分式函数由透视函数和仿射函数复合而成。设 g : R n → R m + 1 g:R^n \rightarrow R^{m+1} g:RnRm+1是仿射的,即
g ( x ) = [ A c T ] x + [ b d ] g(x) = \begin{bmatrix} A \\ c^T \end{bmatrix} x + \begin{bmatrix} b \\d \end{bmatrix} g(x)=[AcT]x+[bd]
其中 A ∈ R m × n , b ∈ R m , c ∈ R n A \in R^{m\times n},b\in R^m,c\in R^n ARm×n,bRm,cRn并且 d ∈ R d\in R dR。则由 f = P ∘ g f = P \circ g f=Pg给出的函数 f : R n → R m f:R^n \rightarrow R^m f:RnRm
f ( x ) = ( A x + b ) / ( c T x + d ) , dom  f = { x ∣ c T x + d > 0 } f(x) = (Ax+b) / (c^Tx+d) ,\text{dom} \ f = \{x \mid c^Tx+d >0\} f(x)=(Ax+b)/(cTx+d),dom f={xcTx+d>0}
称为线性分式函数(或投射函数)。
线性分式函数也是保凸的。

广义不等式

正常锥与广义不等式

如果锥 K ⊆ R n K \subseteq R^n KRn满足以下条件,则称它为正常锥。

  • K K K是凸的
  • K K K是闭的
  • K K K是实的
  • K K K是尖的,不包含直线
    正常锥可以用来定义广义不等式,即 R n R^n Rn上的偏序关系。
    x ⪯ K y    ⟺    y − x ∈ K x ≺ k y    ⟺    y − x ∈ int  K \begin{aligned} &x \preceq_K y \iff y-x \in K \\ &x \prec_k y \iff y-x \in \text{int} \ K \end{aligned} xKyyxKxkyyxint K
  • ⪯ , ≺ \preceq,\prec ,出现在向量间时,应被理解为分量不等式, K = R + n K=R^n_+ K=R+n被省略
  • ⪯ , ≺ \preceq,\prec ,出现在对称矩阵间时,应被理解为半正定锥的广义不等式, K = S + n K=S^n_+ K=S+n被省略
    广义不等式有如下性质
  • 保序性
  • 传递性
  • 对于非负数乘保序
  • 自反
  • 反对称
  • 对于极限运算保序

最小元与极小元

在广义不等式下,并不是所有元素都是可比的。

  • 最小元
    • ∀ y ∈ S , x ⪯ K y \forall y\in S,x\preceq_K y yS,xKy
    • S ⊆ x + K S \subseteq x+K Sx+K
  • 极小元
    • y ∈ S , y ⪯ K x ⇒ y = x y\in S,y\preceq_K x \Rightarrow y=x yS,yKxy=x
    • ( x − K ) ∩ S = x (x-K) \cap S = {x} (xK)S=x

对偶锥与广义不等式

对偶锥

K K K为一个锥,集合
K ∗ = { y ∣ x T y ≥ 0 , ∀ x ∈ K } K^* = \{y\mid x^Ty \geq 0,\forall x\in K\} K={yxTy0,xK}
K K K的对偶锥。对偶锥总是凸的。

  • K ∗ K^* K是闭凸锥
  • K 1 ⊆ K 2 → K 2 ∗ ⊆ K 1 ∗ K_1 \subseteq K_2 \rightarrow K_2^* \subseteq K_1^* K1K2K2K1
  • 如果 K K K有非空内部,那么 K ∗ K^* K是尖的
  • 如果 K K K的闭包是尖的,那么 K ∗ K^* K有非空内部
  • K ∗ ∗ K^{**} K∗∗ K K K的凸包的闭包。(如果 K K K是凸和闭的, K ∗ ∗ = K K^{**}=K K∗∗=K
    范数锥 K = { ( x , t ) ∈ R n + 1 ∣ ∥ x ∥ ≤ t } K=\{(x,t)\in R^{n+1} \mid \parallel x \parallel \leq t\} K={(x,t)Rn+1∣∥x∥≤t}的对偶锥由其对偶范数定义
    K ∗ = { ( u , v ) ∈ R n + 1 ∣ ∥ u ∥ ≤ v } K^* = \{(u,v) \in R^{n+1} \mid \parallel u \parallel \leq v \} K={(u,v)Rn+1∣∥u∥≤v}
    其中 ∥ u ∥ ∗ = s u p { u T x ∣ ∥ x ∥ ≤ 1 } \parallel u \parallel_* = sup\{u^Tx \mid \parallel x \parallel \leq 1\} u=sup{uTx∣∥x∥≤1}

广义不等式的对偶

凸锥 K K K是正常锥,广义不等式 ⪯ K ∗ \preceq_{K^*} K为广义不等式$\preceq_K $的对偶

  • x ⪯ K y    ⟺    ∀ λ ⪰ K ∗ 0 , λ T x ≤ λ T y x \preceq_K y \iff \forall \lambda \succeq_{K^*} 0,\lambda^Tx \leq \lambda^Ty xKyλK0,λTxλTy
  • x ≺ K y    ⟺    ∀ λ ⪰ K ∗ 0 , λ ≠ 0 , λ T x < λ T y x \prec_K y \iff \forall \lambda \succeq{K^*} 0,\lambda \neq 0,\lambda^Tx < \lambda^Ty xKyλK0,λ=0,λTx<λTy

对偶不等式定义的最小元和极小元

  • 最小元的对偶性质
    x x x S S S上关于广义不等式 ⪯ K \preceq_K K的最小元    ⟺    ∀ λ ≻ K ∗ 0 \iff \forall \lambda \succ_{K^*} 0 λK0 x x x是在 z ∈ S z\in S zS上极小化 λ T z \lambda^Tz λTz的唯一最优解。从集合上看,这意味着对于任意 λ ≻ K ∗ 0 \lambda \succ_{K^*} 0 λK0,超平面
    { z ∣ λ T ( z − x ) = 0 } \{z\mid \lambda^T(z-x)=0\} {zλT(zx)=0}
    是在 x x x处对 S S S的一个严格支撑超平面。
  • 极小元的对偶性质
    ∃ λ ≻ K ∗ 0 \exists \lambda \succ_{K^*} 0 λK0 x x x z ∈ S z\in S zS上极小化 λ T z \lambda^Tz λTz,那么 x x x是极小的
    当凸性成立,其逆定理成立。

凸函数

基本性质

定义

函数 f : R n → R f:R^n \rightarrow R f:RnR是凸的,如果 d o m   f dom \ f dom f是凸集,且对于任意 x , y ∈ d o m   f x,y \in dom \ f x,ydom f和任意 0 ≤ θ ≤ 1 0\leq \theta \leq 1 0θ1,有
f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x+(1-\theta)y) \leq \theta f(x) + (1-\theta) f(y) f(θx+(1θ)y)θf(x)+(1θ)f(y)
函数凸的充要条件为
∀ x ∈ d o m   f , ∀ v ∈ R n , g ( t ) = f ( x + t v )  is convex \forall x \in dom \ f,\forall v \in R^n,g(t) = f(x+tv) \text{ is convex} xdom f,vRn,g(t)=f(x+tv) is convex

扩展值延伸

f ~ ( x ) = { f ( x ) x ∈ d o m   f ∞ x ∉ d o m   f \widetilde{f}(x) = \begin{cases} f(x) & x\in dom \ f \\ \infty & x \notin dom \ f \end{cases} f (x)={f(x)xdom fx/dom f

一阶条件

如果 f f f可微, f f f是凸函数的充要条件是 d o m   f  is convex dom \ f \text{ is convex} dom f is convex ∀ x , y ∈ d o m   f \forall x,y\in dom \ f x,ydom f,有
f ( y ) ≥ f ( x ) + ∇ f ( x ) T ( y − x ) f(y) \geq f(x) + \nabla f(x)^T(y-x) f(y)f(x)+f(x)T(yx)

二阶条件

如果 f f f二阶可微, f f f是凸函数的充要条件是 ∀ x ∈ d o m   f \forall x\in dom \ f xdom f,有
∇ 2 f ( x ) ⪰ 0 \nabla^2f(x) \succeq 0 2f(x)0

下水平集

α \alpha α-下水平集
C α = { x ∈ d o m   f ∣ f ( x ) ≤ α } C_\alpha = \{x \in dom \ f \mid f(x) \leq \alpha \} Cα={xdom ff(x)α}
凸函数的下水平集仍然是凸集

上境图

epi  f = { ( x , t ) ∣ x ∈ dom  f , f ( x ) ≤ t } \text{epi }f = \{(x,t) \mid x\in \text{dom }f, f(x) \leq t\} epi f={(x,t)xdom f,f(x)t}
一个函数是凸函数,充要条件是其上境图是凸集。

Jesen不等式及其变形

如果 f ( x ) f(x) f(x)是凸函数,则
f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x+(1-\theta)y) \leq \theta f(x) + (1-\theta)f(y) f(θx+(1θ)y)θf(x)+(1θ)f(y)
对不同的凸函数应用Jesen不等式,可以得到很多不等式

保凸运算

  • 非负加权求和: f = w 1 f 1 + ⋯ + w m f m f=w_1f_1+\cdots+w_mf_m f=w1f1++wmfm

  • 复合仿射映射: g ( x ) = f ( A x + b ) g(x)= f(Ax+b) g(x)=f(Ax+b)

  • 逐点最大: f ( x ) = max ⁡ { f 1 ( x ) , ⋯   , f m ( x ) } f(x) = \max \{f_1(x),\cdots,f_m(x)\} f(x)=max{f1(x),,fm(x)}

  • 逐点上确界: g ( x ) = sup y ∈ A f ( x , y ) g(x)=\text{sup}_{y\in \mathcal A} f(x,y) g(x)=supyAf(x,y)

  • 复合函数: f ( x ) = h ( g ( x ) ) f(x)=h(g(x)) f(x)=h(g(x))
    f ′ ′ ( x ) = h ′ ′ ( g ( x ) ) g ′ ( x ) 2 + h ′ ( g ( x ) ) g ′ ′ ( x ) f^{\prime\prime}(x) = h^{\prime\prime}(g(x))g^\prime(x)^2 + h^\prime(g(x))g^{\prime\prime(x)} f′′(x)=h′′(g(x))g(x)2+h(g(x))g′′(x)

    • $\text{h is convex and } \widetilde h \text{ is not decrease, g is convex} $
    • $\text{h is convex and } \widetilde h \text{ is not increase, g is convex} $
    • $\text{h is convex and } \widetilde h \text{ is not increase, g is convex} $
    • $\text{h is convex and } \widetilde h \text{ is not increase, g is convex} $
  • 最小化: g ( x ) = i n f y ∈ C f ( x , y ) , ∃ x , g ( x ) > − ∞ g(x) = inf_{y \in \mathcal C}f(x,y),\exists x,g(x)> -\infty g(x)=infyCf(x,y),x,g(x)>

  • 透视函数: g ( x , t ) = t f ( x / t ) g(x,t) = tf(x/t) g(x,t)=tf(x/t)

共轭函数

f ∗ ( y ) = sup ⁡ x ∈ d o m f ( y T x − f ( x ) ) f^*(y) = \sup_{x \in dom f}(y^Tx-f(x)) f(y)=xdomfsup(yTxf(x))

使得上确界有限的所有 y y y组成了共轭函数的定义域。

无论原函数是否是凸函数,共轭函数永远是凸函数,它是一系列关于y的仿射函数的逐点上确界

基本性质

  • Fenchel不等式
    f ( x ) + f ∗ ( y ) ≥ x T y f(x)+ f^*(y) \geq x^Ty f(x)+f(y)xTy

  • 如果 f f f是凸且闭的,共轭函数的共轭函数是原函数

  • 如果 f f f可微, y T x − f ( x ) y^Tx-f(x) yTxf(x)取最大值时有 y = ∇ f ( x ∗ ) y=\nabla f(x^*) y=f(x),令 y = ∇ f ( x ∗ ) y=\nabla f(x^*) y=f(x),则
    f ∗ ( y ) = x ∗ T ∇ f ( x ∗ ) − f ( x ∗ ) f^*(y) = x^{*T}\nabla f(x^*) -f(x^*) f(y)=xTf(x)f(x)

  • 伸缩变换
    g ( x ) = a f ( x ) + b    ⟺    g ∗ ( y ) = a f ∗ ( y / a ) − b g(x) = af(x)+b \iff g^*(y) = af^*(y/a)-b g(x)=af(x)+bg(y)=af(y/a)b

  • 复合仿射变换
    g ( x ) = f ( A x + b )    ⟺    g ∗ ( y ) = f ∗ ( A − T y ) − b T A − 1 y g(x) = f(Ax+b) \iff g^*(y) = f^*(A^{-T}y)-b^TA^{-1}y g(x)=f(Ax+b)g(y)=f(ATy)bTA1y

  • 独立函数的和
    f ( u , v ) = f 1 ( u ) + f 2 ( v )    ⟺    f ∗ ( w , z ) = f 1 ∗ ( w ) + f 2 ∗ ( z ) ,              ( f 1 , f 2  is convex ) f(u,v) = f_1(u)+f_2(v) \iff f^*(w,z) = f_1^*(w)+f_2^*(z),\ \ \ \ \ \ \ \ \ \ \ \ (f_1,f_2 \text{ is convex}) f(u,v)=f1(u)+f2(v)f(w,z)=f1(w)+f2(z),            (f1,f2 is convex)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的卤蛋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值