pytorch
123梦野
这个作者很懒,什么都没留下…
展开
-
黑马程序员人工智能NLP基础教程1——pytorch
pytorch构建分类器import numpy as npimport matplotlib.pyplot as pltimport torch#构建展示图像的函数def imshow(img): img = img/2+0.5 #固定格式 npimg = img.numpy() #将图像tensor类型转换为numpy类型才能显示 plt.imshow(np.transpose(npimg,(1,2,0))) plt.show()#从数据地带其中读取一原创 2021-04-06 17:33:20 · 976 阅读 · 0 评论 -
Pytorch快速入门——1
MNIST数据集原创 2020-09-15 20:57:05 · 113 阅读 · 0 评论 -
python深度学习
用numpy实现有关回归的一个机器学习任务主要步骤包括:首先,是给出一个数组x,然后基于表达式:y=3x^2+2,加上一些噪音数据到达另一组数据y。然后,构建一个机器学习模型,学习表达式y=wx^2+b的两个参数w,b。利用数组x,y的数据为训练数据最后,采用梯度梯度下降法,通过多次迭代,学习到w、b的值。# #!/usr/bin/env python# # -*- coding:utf-8 -*-import torchimport numpy as npimport matplotl原创 2020-09-03 14:48:05 · 404 阅读 · 0 评论 -
pytorch1
原创 2020-08-04 22:49:07 · 128 阅读 · 0 评论 -
深度学习之PyTorch实战计算机视觉3——迁移学习
迁移学习:是我们通过对一个训练好的模型进行细微调整,就能将其应用到相似的问题中,最后还能取得很好的效果;另外,对于原始数据较少的问题,我们也能够通过采用迁移模型进行有效解决。在使用迁移学习的过程中有时会导致迁移模型出现负迁移,我们可以将其理解为模型的泛化能力恶化。假如我们将迁移学习用于解决两个毫不相关的问题,则极有可能使最后迁移得到的模型出现负迁移。数据集处理os.path.join就是来自之前提到的 os包的方法,它的作用是将输入参数中的两个名字拼接成一个完整的文件路径。其他常用的os原创 2020-07-20 17:29:57 · 406 阅读 · 0 评论 -
深度学习之PyTorch实战计算机视觉2
自动梯度torch.autograd和Variabletorch.autograd包的主要功能是完成神经网络后向传播中的链式求导,实现自动梯度功能的过程大致为:先通过输入的Tensor数据类型的变量在神经网络的前向传播过程中生成一张计算图,然后根据这个计算图和输出结果准确计算出每个参数需要更新的梯度,并通过完成后向传播完成对参数的梯度更新。在实践中完成自动梯度需要用到torch.autograd包中的Variable类对我们定义的Tensor数据类型变量进行封装,在封装后,计算图中的各个节点就是一个Va原创 2020-07-17 17:16:26 · 1072 阅读 · 0 评论 -
深度学习之PyTorch实战计算机视觉1
python中的多为数组的基本操作矩阵是不存在除法运算的,但是数组能够进行除法运算#a是多维数组,将多维数组扁平化处理,转变成一维数组,以下方法可以用来迭代数组内的数据for i in a.flat: print(i)python中的Matplotlibimport matplotlib.pyplot as pltimport numpy as np%matplotlib inlinenp.random.seed(42)x = np.random.randn(30)#传递给plot原创 2020-07-16 16:34:37 · 474 阅读 · 0 评论 -
pytorch资料网站
https://github.com/ShusenTang/Dive-into-DL-PyTorch/blob/master/docs/chapter09_computer-vision/9.1_image-augmentation.md原创 2020-04-09 17:11:38 · 146 阅读 · 0 评论 -
pytorch深度学习实践6——代码实现(搭建简单的神经网络、二分类的神经网络、快速搭建神经网络的方式、保存和提取神经网络、batch训练(进行小批训练))
import torchimport torch.nn.functional as Ffrom torch.autograd import Variableimport matplotlib.pyplot as plt#假的数据x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)y = x.pow(2)+0.2*torch.ra...原创 2020-04-08 17:30:35 · 922 阅读 · 0 评论 -
pytorch深度学习实践5——dataloader和dataset、transform运行机制
dataloaderdataset定义数据从哪里读取和怎么读取二分类,区分一块和一百数据准备构建datasettransform运行机制对图像进行增强是为了提高模型的泛化能力normalize将数据的均值变为0,标准差变为1transform图像增强方法1.裁剪2.随机裁剪3.随机大小、随机长宽比裁剪4.裁剪5.翻转6.旋转...原创 2020-04-08 11:03:40 · 445 阅读 · 0 评论 -
pytorch深度学习实践4——循环神经网络RNN
循环神经网络(基础篇)RNN主要处理有序列关系的数据:天气、股市、自然语言RNN示例:RNN工作方式:RNN示例2:RNN的实现:运用RNN:嵌入层:示例3:LSTMGRU循环神经网络训练器示例:python中,时间的单位是秒(s)数据准备:构建模型:双向循环神经网络:训练:测试:其他示例用...原创 2020-03-31 16:19:07 · 848 阅读 · 2 评论 -
pytorch深度学习实践3——多分类问题,卷积神经网络CNN
多分类问题Softmax Classifier分类器全连接网络:用线性层将网络连接在一起softmax数学原理:loss函数实现方法:交叉熵损失:手写数字识别分类案例代码:引入的包和库:将图像转换为pytorch的tensor将图像归一化为0-1分布将transforms运用到dataset中:构建模型:定义损失函数和优化器:训练:卷积神经网...原创 2020-03-31 11:56:25 · 9685 阅读 · 0 评论 -
pytorch深度学习实践2——Logistic回归,批标准化Batch Normalization,处理多维特征的输入,加载数据集
Logistic Regression 逻辑斯蒂回归Logistic Regression,解决分类问题Logistic函数——饱和函数logistic 回归代码:处理多维特征的输入最后模型的学习能力并不是越强越好,越强会将噪声也学习到,对真实的估计值产生偏移,所以学习能力需要具有一定的泛化能力才是最好的。创建数据:设计模型:构建损失函数和优化器训练...原创 2020-03-30 16:01:33 · 1264 阅读 · 0 评论 -
pytorch深度学习实践1——基础知识,线性模型,过拟合,梯度下降算法的实现,反向传播,用pytorch实现线性模回归
基础反向传播的原理是计算图,是对函数求偏导,只有一条支路的直接相乘,有两条支路的要进行相加。线性模型构建神经网络的过程:寻找所需的数据集,数据集分为训练集和测试集,训练集又分为训练集和开发集建立神经网络模型:y=f(x)训练数据集对新的数据进行推理人工进行训练:人工选择权重泛化能力:即对模型训练完后,对新的图像也可以正确识别的能力求损失函数的最小值,损失函数是预测值减去真...原创 2020-03-30 14:08:22 · 351 阅读 · 0 评论 -
PyTorch动态神经网络入门1
numpy和torch数据转换import torchimport numpy as npnp_data = np.arange(6).reshape((2,3))torch_data = torch.from_numpy(np_data) #numpy数据转torch数据tensor2array = torch_data.numpy() #torch数据转numpy数据prin...原创 2020-02-22 18:30:19 · 168 阅读 · 0 评论