第三讲:函数的极限,连续性

章节总目录

函数极限

泰勒公式

x − > 0 x->0 x>0有如下公式:

s i n x = ∑ i = 1 ( − 1 ) i + 1 x 2 i − 1 ( 2 i − 1 ) ! sin x=\sum_{i=1}(-1)^{i+1}\frac{x^{2i-1}}{(2i-1)!} sinx=i=1(1)i+1(2i1)!x2i1

c o s x = ∑ i = 0 ( − 1 ) i x 2 i ( 2 i ) ! cos x=\sum_{i=0}(-1)^i\frac{x^{2i}}{(2i)!} cosx=i=0(1)i(2i)!x2i

t a n x = x + 1 3 x 3 + 2 15 x 5 + O ( x 5 ) tan x=x+\frac13x^3+\frac2{15}x^5+O(x^5) tanx=x+31x3+152x5+O(x5)

e x = ∑ i = 0 x i i ! e^x=\sum_{i=0}\frac{x^i}{i!} ex=i=0i!xi

l n ( 1 + x ) = ∑ i = 1 ( − 1 ) i + 1 x i i ln(1+x)=\sum_{i=1}(-1)^{i+1}\frac{x^i}{i} ln(1+x)=i=1(1)i+1ixi

( 1 + x ) α = ∑ i = 0 x i ∏ j = 0 i − 1 ( α − j ) i ! (1+x)^α=\sum_{i=0}\frac{x^i\prod_{j=0}^{i-1}(α-j)}{i!} (1+x)α=i=0i!xij=0i1(αj)

a c r t a n x = ∑ i = 1 ( − 1 ) i + 1 x ( 2 i − 1 ) 2 i − 1 acrtan x=\sum_{i=1}(-1)^{i+1}\frac{x^{(2i-1)}}{2i-1} acrtanx=i=1(1)i+12i1x(2i1)

等价无穷小

记忆等价无穷小公式只是为了加快计算速度,等价无穷小可以用泰勒公式解释,而且泰勒公式适用范围更广。无穷小的乘除法才用等价无穷小,加减法运算用泰勒展开公式。

x − > 0 x->0 x>0有以下常用等价无穷小:

  • ( s i n x ) ∼ ( t a n x ) ∼ ( a r c t a n x ) ∼ ( e x − 1 ) ∼ l n ( x + 1 ) ∼ x (sin\quad x)\sim (tan\quad x )\sim (arctan\quad x) \sim (e^x-1) \sim ln(x+1) \sim x (sinx)(tanx)(arctanx)(ex1)ln(x+1)x(具有传递性)
  • ( 1 + β x ) α − 1 ∼ α β x (1+βx)^α-1 \sim αβx (1+βx)α1αβx
  • 1 − c o s x ∼ 1 2 x 2 1-cos\quad x\sim \frac12x^2 1cosx21x2
  • l o g a ( 1 + x ) ∼ x l n a log_a(1+x)\sim \frac x{lna} loga(1+x)lnax
  • a x − 1 ∼ x l n a a^x-1\sim xlna ax1xlna

补充:

  • l n x ln \quad x lnx ~ ( x − 1 ) (x-1) (x1)
    推导:
    l n x = l n ( 1 + [ x − 1 ] ) ln x = ln (1+[x-1]) lnx=ln(1+[x1])
    l n ( 1 + [ x − 1 ] ) ln (1+[x-1]) ln(1+[x1])~ ( x − 1 ) (x-1) (x1)
    得: l n x ln \quad x lnx~ ( x − 1 ) . (x-1). (x1).
    这个技巧可以做很多类似的题目。
  • 重要极限公式
    l i m x − > ∞ ( 0 ) ( 1 + 1 x ) x = e lim_{x->∞(0)}(1+\frac 1x)^x=e limx>(0)(1+x1)x=e

洛必达法则

对于 l i m x − > x 0 f ( x ) g ( x ) lim _{x->x_0}\frac{f(x)} {g(x)} limx>x0g(x)f(x) 0 / 0 0/0 0/0或者 ∞ / ∞ ∞/∞ /型的极限未定式,如果f(x),g(x)的导函数存在,则
l i m x − > x 0 f ( x ) g ( x ) = > l i m x − > x 0 f ′ ( x ) g ′ ( x ) lim _{x->x_0}\frac{f(x)} {g(x)}=>lim _{x->x_0}\frac{f^{'}(x)} {g^{'}(x)} limx>x0g(x)f(x)=>limx>x0g(x)f(x)

注意:不能用右边式子推导左边。

夹逼准则

义如其名,略。

归结原则

暂时略。

七种未定式

  • 0 / 0 , ∞ / ∞ , 0 ∗ ∞ , ∞ − ∞ 0/0,∞/∞,0*∞,∞-∞ 0/0,/,0,
    0 / 0 , ∞ / ∞ 0/0,∞/∞ 0/0,/的解法如果洛必达法则可用就使用洛必达法则,也可以化成 0 / 0 0/0 0/0型使用泰勒展开公式,展开的原则是上下同阶原则,例题: l i m x − > x 0 s i n x − x x 3 = 1 6 lim_{x->x_0}\frac{sin x-x}{x^3}=\frac 16 limx>x0x3sinxx=61
    0 ∗ ∞ 0*∞ 0型的可以把乘法写成除法,即 0 / 1 ∞ , ∞ / 1 0 0/ \frac1∞,∞/ \frac10 0/1,/01的形式从而变成
    0 / 0 , ∞ / ∞ 0/0,∞/∞ 0/0,/形式。
    ∞ − ∞ ∞-∞ 型通过提取公因式和同分创造分母,变成 0 / 0 , ∞ / ∞ 0/0,∞/∞ 0/0,/形式。
  • ∞ 0 , 0 0 , 1 ∞ ∞^0,0^0,1^∞ 0,00,1
    对于这种三种形式经常使用对数恒等变形:
    l i m u v = e l i m ( v l n u ) lim \quad u^v=e^{lim (\quad v\quad ln\quad u)} limuv=elim(vlnu)
    化成种形式之后,只需要计算出 l i m ( v l n u ) lim (\quad v\quad ln\quad u) lim(vlnu)即可,这个式子很容易化成 0 / 0 , ∞ / ∞ 0/0,∞/∞ 0/0,/形式。
    特别的对于 1 ∞ 1^∞ 1型,可以写成 l i m u v = e l i m v ( u − 1 ) lim \quad u^v=e^{lim \quad v(u-1)} limuv=elimv(u1),这里的证明使用重要极限证的,此处证明略,记忆的话可以用 l n x ln \quad x lnx ~ ( x − 1 ) (x-1) (x1) 来记忆,当然这样不严谨,只是说方便记忆。

函数的连续性

  • 连续
    l i m x − > x 0 f ( x ) = f ( x 0 ) lim_{x->x_0}f(x)=f(x_0) limx>x0f(x)=f(x0)(即 x 0 x_0 x0左右极限值相等),称 x 0 x_0 x0点连续,否则为间断点,间断点分为两类。

  • 可导
    顺便在这里补充一下可导的充分必要条件。
    函数在 x = x 0 x=x_0 x=x0可导 <==> 函数在 x = x 0 x=x_0 x=x0连续( f x 0 + = f x 0 − f_{x_0^+}=f_{x_0^-} fx0+=fx0)且左右导数存在且相等( f x 0 + ′ = f x 0 − ′ f'_{x_0^+}=f'_{x_0^-} fx0+=fx0)
    用导数定义做也可以,用求导公式也行。一般来说题目可能会给出一个分段函数。

  • 第一类间断点
    x 0 x_0 x0的左右极限都存在,在考研里,如果极限为无穷大,则认为极限不存在。
    l i m x − > x 0 + f ( x ) = = l i m x − > x 0 − f ( x ) lim_{x->x_0^+}f(x)==lim_{x->x_0^-}f(x) limx>x0+f(x)==limx>x0f(x)?可去间断点 :跳跃间断点;

  • 第二类间断点
    无穷间断点: l i m x − > x 0 f ( x ) = ∞ lim_{x->x_0}f(x)=∞ limx>x0f(x)=
    振荡间断点:如 s i n 1 x sin \frac1x sinx1,点x=0

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值