第六讲:中值定理

定理考试时直接使用即可,无需再证明。

较为简单的定理

f(x)在[a,b]连续:

  • 有界限与最值定理
    f ( x ) f(x) f(x)在[a,b]有界,且拥有最大值M,最小值m
  • 介值定理
    当A∈[m,M],则∃ξ∈[a,b],使得 f ( ξ ) = A f(ξ)=A f(ξ)=A
  • 零点定理
    f ( a ) ∗ f ( b ) < 0 f(a)*f(b)<0 f(a)f(b)<0,则∃ξ∈[a,b],使得 f ( ξ ) = A f(ξ)=A f(ξ)=A(介值定理的一种特殊情况)

以上定理都比较直观,所以写在一起。

平均值定理

f(x)在[a,b]连续:

  • 离散(平均值定理)
    a < x 1 < x 2 < x 3 < . . . . . < x n < b , ∃ ξ ∈ [ x 1 , x n ] a<x_1<x_2<x_3<.....<x_n<b,∃ξ∈[x_1,x_n] a<x1<x2<x3<.....<xn<b,ξ[x1,xn]。使得:
    f ( ξ ) = f ( x 1 ) + f ( x 2 ) + f ( x 3 ) + . . . . . . f ( x n ) n f(ξ)=\frac{f(x_1)+f(x_2)+f(x_3)+......f(x_n)}{n} f(ξ)=nf(x1)+f(x2)+f(x3)+......f(xn)

  • 连续(积分中值定理)
    ∃ ξ ∈ [ a , b ] ∃ξ∈[a,b] ξ[a,b],使得:
    f ( ξ ) = ∫ a b f ( x ) d x b − a f(ξ)=\frac{\int_{a}^{b}f(x)dx}{b-a} f(ξ)=baabf(x)dx

两者都可以用介值定理证明。
积分中定理在开区间(a,b)也可以用。证明过程如下:
F ( x ) = ∫ a x f ( x ) d x F(x)=\int_{a}^{x}f(x)dx F(x)=axf(x)dx,由拉格朗日中值定理, ∃ ξ ∈ ( a , b ) ∃ξ∈(a,b) ξ(a,b)使得:
F ( b ) − F ( a ) = F ′ ( ξ ) ( b − a ) F(b)-F(a)=F'(ξ)(b-a) F(b)F(a)=F(ξ)(ba)
∫ a b f ( x ) d x − 0 = f ( ξ ) ( b − a ) \int_{a}^{b}f(x)dx-0=f(ξ)(b-a) abf(x)dx0=f(ξ)(ba)
证明完毕,这个证明也可以说明积分中值定理闭区间也可以用,因为开区间含与闭区间。

几何意义:
积分中值定理: ∃ξ∈[a,b],使得f(ξ)的值与曲边梯形(积分面积)的平均高度相等。
平均值定理 : 离散版的积分中值定理
拉格朗日中值定理:∃ξ∈(a,b),使得ξ点的切线斜率和线段ab斜率相等。

关于导数(微分)定理

  • 费马定理
    当f(x)在 x 0 x_0 x0处可导,且取得极值,则 f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0
    这是第五讲极值点的第一充分条件,用导数的定义和极限的保号性可以证明。

  • 拉格朗日中值定理
    f(x)在[a,b]连续,(a,b)可导, ∃ ξ ∈ ( a , b ) ∃ξ∈(a,b) ξ(a,b)使得:
    f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f^{'}(ξ)(b-a) f(b)f(a)=f(ξ)(ba)
    罗尔定理时拉格朗日的特殊情况,附加一个条件:f(a)=f(b)时, ∃ ξ ∈ ( a , b ) ∃ξ∈(a,b) ξ(a,b)使得:f(ξ)=0.

  • 柯西中值定理
    f(x),g(x)在[a,b]连续,(a,b)可导,且 g ′ ( x ) ! = 0 ( 考 题 中 这 一 步 可 能 需 要 被 证 明 ) g^{'}(x)!=0(考题中这一步可能需要被证明) g(x)!=0(), ∃ ξ ∈ ( a , b ) ∃ξ∈(a,b) ξ(a,b)使得:
    f ( b ) − f ( a ) g ( b ) − g ( a ) = f ‘ ( ξ ) g ‘ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{‘}(ξ)}{g^{‘}(ξ)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)
    注意柯中定中的ξ是同一个,柯中定不是由两个函数的拉中定作比的来的。

  • 泰勒公式n阶展开
    1.带拉格朗日余项
    设f(x)在 x 0 x_0 x0的某个邻域内n+1阶导数存在,则对该邻域的点x,都有:
    f ( x ) = ∑ i = 0 n f n ( x 0 ) ( x − x 0 ) n n ! f(x)=\sum_{i=0}^{n}\frac{f^{n}(x_0)(x-x_0)^{n}}{n!} f(x)=i=0nn!fn(x0)(xx0)n
    展开到n阶,剩下的式子被称为余项。
    2.带佩亚诺余项
    设f(x)在 x 0 x_0 x0处n阶可导。则存在 x 0 x_0 x0的一个邻域,对于邻域里的点,都有:
    f ( x ) = ∑ i = 0 n f n ( x 0 ) ( x − x 0 ) n n ! f(x)=\sum_{i=0}^{n}\frac{f^{n}(x_0)(x-x_0)^{n}}{n!} f(x)=i=0nn!fn(x0)(xx0)n
    展开到n阶, o ( x − x 0 ) n 称 为 余 项 o(x-x_0)^{n}称为余项 o(xx0)n

注意两者的条件和结果区别。

使用乘积求导公式构造罗尔定理辅助函数

  • 见到 f ( x ) f ′ ( x ) , 构 造 F ( x ) = f 2 ( x ) f(x)f'(x),构造F(x)=f^{2}(x) f(x)f(x),F(x)=f2(x)
  • 见到 f 2 ( x ) + f ( x ) f ′ ′ ( x ) , 构 造 F ( x ) = f ( x ) f ′ ( x ) f^{2}(x)+f(x)f''(x),构造F(x)=f(x)f'(x) f2(x)+f(x)f(x),F(x)=f(x)f(x),依此类推
  • 见到 f ′ ( x ) + f ( x ) ′ g ( x ) , 构 造 F ( x ) = f ( x ) e g ( x ) f'(x)+f(x)'g(x),构造F(x)=f(x)e^{g(x)} f(x)+f(x)g(x),F(x)=f(x)eg(x),因为 e g ( x ) e^{g(x)} eg(x)并不会影响罗尔定理中的存在 F ′ ( x ) = 0 F'(x)=0 F(x)=0
    练习:P89 1.6.5和1.6.6

用定理连接积分,原函数,导数

在这里插入图片描述泰勒通常只考查到二阶导数,因为考高阶计算量太大了。

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值