KNN算法(K近邻)及K近邻算法API应用

本文介绍了KNN(K-Nearest Neighbors)算法的基本原理和步骤,包括选择K值、计算距离和分类决策。通过一个使用sklearn库的Python示例展示了如何对鸢尾花数据集进行建模预测,强调了KNN算法的懒惰学习特性及其在实际应用中的距离度量、K值选择和分类决策等关键要素。
摘要由CSDN通过智能技术生成

KNN算法描述

输入:训练数据集img,xi为实例的特征向量,yi={C1,c2…Ck}为实例类别。

输出:实例x所属的类别y

步骤:

(1)选择参数K

(2)计算未知实例与所有已知实例的距离(多种方式计算距离)

(3)选择最近K个已知实例

(4)根据少数服从多数的原则进行投票,让未知实例归类为K个最近邻中最多数的类别。

总结:KNN算法没有明显的特征训练过程,它的训练阶段仅仅将样本保存起来,训练开销为0,等到收到测试样本后在进行处理(如K值取值和距离计算)。因此,对应于训练阶段的学习该算法是一种懒惰学习(lazy learning)。

KNN三要素:

距离度量
K值选择
分类决策准则

利用KNN算法对数据进行建模预测

from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

if __name__ == '__main__':
    # 1. 加载数据集  
    iris = load_iris() #通过iris.data 获取数据集中的特征值  iris.target获取目标值

    # 2. 数据标准化
    transformer = StandardScaler()
    x_ = transformer.fit_transform(iris.data) # iris.data 数据的特征值

    # 3. 模型训练
    estimator = KNeighborsClassifier(n_neighbors=3) # n_neighbors 邻居的数量,也就是Knn中的K值
    estimator.fit(x_, iris.target) # 调用fit方法 传入特征和目标进行模型训练

    # 4. 利用模型预测
    result = estimator.predict(x_) 
    print(result)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值