机器学习 -----KNN算法

本文详细介绍了k近邻算法(kNN),包括kNN的API用法,如设置k值、权重策略和明可夫斯基距离参数。同时,探讨了超参数的选择,尤其是k值对模型性能的影响,并提到了使用网格搜索进行超参数调优的方法。
摘要由CSDN通过智能技术生成

k近邻算法(kNN)

在特征空间中,如果一个样本附近的k个最近(即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。

1、knn算法API

from sklearn.neighbors import KNeighborsClassifier 
kNN_classifier = KNeighborsClassifier(n_neighbors=6)  #定义k值,k=6
kNN_classifier.fit(X_train, y_train) 
y_predict = kNN_classifier.predict
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值