Umap高维数据可视化与降维

Umap解决高维数据可视化的问题,以及高效降维。

Umap地址:https://github.com/lmcinnes/umap

文档地址:UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction — umap 0.5 documentation

1.pip通过清华镜像安装方式:

pip install umap-learn[plot]  -i https://pypi.tuna.tsinghua.edu.cn/simple

2.使用方式

2.1连续性数据的可视化

# Umap的纯连续型数据降维与可视化
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_diabetes 
from sklearn.svm import SVR
import umap
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
%matplotlib inline
#  加载是数据集
load = load_diabetes()
data = pd.DataFrame(load.data)
data.columns = load.feature_names
target =  load.target

# 对特征数据进行标准化
scaled_data = StandardScaler().fit_transform(data)
# 使用umap对数据进行降维
embedding = umap.UMAP().fit_transform(scaled_data)
embedding.shape

 

# 对降维后的数据画图
plt.scatter(embedding[:, 0],embedding[:, 1])

 

 2.2对分类数据降维(含标签)

使用sklearn的手写数字来做数据可视化

# 分类手写数据的可视化
from sklearn.datasets import load_digits
digits = load_digits()
reducer = umap.UMAP(random_state=42)
reducer.fit(digits.data)
embedding = reducer.transform(digits.data)
# Verify that the result of calling transform is
# idenitical to accessing the embedding_ attribute
assert(np.all(embedding == reducer.embedding_))
embedding.shape

画图

plt.figure(figsize=(15,10))
plt.scatter(embedding[:, 0], embedding[:, 1], c=digits.target, cmap='Spectral', s=5)
plt.gca().set_aspect('equal', 'datalim')
plt.colorbar(boundaries=np.arange(11)-0.5).set_ticks(np.arange(10))
plt.title('UMAP projection of the Digits dataset', fontsize=24);

2.3对混合数据(离散、连续)在分别降维后组合在一起进行可视化

使用seaborn的钻石数据集

#####对混合数据(离散、连续)在分别降维后组合在一起进行可视化
# 砖石数据
from sklearn.preprocessing import RobustScaler
import umap.plot
diamonds = sns.load_dataset('diamonds')
diamonds.head()

price是标签,其余是特征

# 离散数据与连续数据的划分
numeric = diamonds[["carat", "table", "x", "y", "z"]].copy()
ordinal = diamonds[["cut", "color", "clarity"]].copy()
# 连续数据预处理
scaled_numeric = RobustScaler().fit_transform(numeric)
scaled_numeric[:5]

# 离散数据数据因与顺序有关所以以数字划分表示等级
# 若离散数据与顺序无关,则使用独热编码后,UMAP设置参数metric为dice
ordinal["cut"] = ordinal.cut.map({"Fair":0, "Good":1, "Very Good":2, "Premium":3, "Ideal":4})
ordinal["color"] = ordinal.color.map({"D":0, "E":1, "F":2, "G":3, "H":4, "I":5, "J":6})
ordinal["clarity"] = ordinal.clarity.map({"I1":0, "SI2":1, "SI1":2, "VS2":3, "VS1":4, "VVS2":5, "VVS1":6, "IF":7})

# 分别对数据进行降维,因分类数据与顺序有关所以设置参数为metric="manhattan"
numeric_mapper = umap.UMAP(n_neighbors=15, random_state=42).fit(scaled_numeric)
ordinal_mapper = umap.UMAP(metric="manhattan", n_neighbors=150, random_state=42).fit(ordinal.values)

# 对连续数据进行画图,
umap.plot.points(numeric_mapper, values=diamonds["price"], cmap="viridis")

# 对分类数据分别画图
fig, ax = umap.plot.plt.subplots(2, 2, figsize=(12,12))
umap.plot.points(ordinal_mapper, labels=diamonds["color"], ax=ax[0,0])
umap.plot.points(ordinal_mapper, labels=diamonds["clarity"], ax=ax[0,1])
umap.plot.points(ordinal_mapper, labels=diamonds["cut"], ax=ax[1,0])
umap.plot.points(ordinal_mapper, values=diamonds["price"], cmap="viridis", ax=ax[1,1])

 

"""
这里有三种组合方式
那么,假设我们不能只是将原始数据粘合在一起并在其上贴上合理的指标,我们能做什么? 
我们可以对模糊拓扑表示进行交集或并集。 还需要做一些工作来重申 UMAP 的理论假设(局部连通性,近似均匀分布)。 
幸运的是,只要您手头有适合的 UMAP 模型的副本(我们在这种情况下就是这样做的),UMAP 就可以使这相对容易。 
要使两个模型相交,只需使用 * 运算符; 使用 + 运算符来联合它们。
"""
intersection_mapper = numeric_mapper * ordinal_mapper
union_mapper = numeric_mapper + ordinal_mapper
contrast_mapper = numeric_mapper - ordinal_mapper

_images/composing_models_42_1.png

# 并集
umap.plot.points(union_mapper, labels=diamonds["color"])

_images/composing_models_44_1.png

# 差集
umap.plot.points(contrast_mapper, values=diamonds["price"], cmap="viridis")

_images/composing_models_47_1.png

3.类的说明

class UMAP(BaseEstimator):
    """Uniform Manifold Approximation and Projection
    Finds a low dimensional embedding of the data that approximates
    an underlying manifold.
    Parameters
    ----------
    n_neighbors: float (optional, default 15)
        The size of local neighborhood (in terms of number of neighboring
        sample points) used for manifold approximation. Larger values
        result in more global views of the manifold, while smaller
        values result in more local data being preserved. In general
        values should be in the range 2 to 100.
    n_components: int (optional, default 2)
        The dimension of the space to embed into. This defaults to 2 to
        provide easy visualization, but can reasonably be set to any
        integer value in the range 2 to 100.
    metric: string or function (optional, default 'euclidean')
        The metric to use to compute distances in high dimensional space.
        If a string is passed it must match a valid predefined metric. If
        a general metric is required a function that takes two 1d arrays and
        returns a float can be provided. For performance purposes it is
        required that this be a numba jit'd function. Valid string metrics
        include:
            * euclidean
            * manhattan
            * chebyshev
            * minkowski
            * canberra
            * braycurtis
            * mahalanobis
            * wminkowski
            * seuclidean
            * cosine
            * correlation
            * haversine
            * hamming
            * jaccard
            * dice
            * russelrao
            * kulsinski
            * ll_dirichlet
            * hellinger
            * rogerstanimoto
            * sokalmichener
            * sokalsneath
            * yule
        Metrics that take arguments (such as minkowski, mahalanobis etc.)
        can have arguments passed via the metric_kwds dictionary. At this
        time care must be taken and dictionary elements must be ordered
        appropriately; this will hopefully be fixed in the future.
    n_epochs: int (optional, default None)
        The number of training epochs to be used in optimizing the
        low dimensional embedding. Larger values result in more accurate
        embeddings. If None is specified a value will be selected based on
        the size of the input dataset (200 for large datasets, 500 for small).
    learning_rate: float (optional, default 1.0)
        The initial learning rate for the embedding optimization.
    init: string (optional, default 'spectral')
        How to initialize the low dimensional embedding. Options are:
            * 'spectral': use a spectral embedding of the fuzzy 1-skeleton
            * 'random': assign initial embedding positions at random.
            * A numpy array of initial embedding positions.
    min_dist: float (optional, default 0.1)
        The effective minimum distance between embedded points. Smaller values
        will result in a more clustered/clumped embedding where nearby points
        on the manifold are drawn closer together, while larger values will
        result on a more even dispersal of points. The value should be set
        relative to the ``spread`` value, which determines the scale at which
        embedded points will be spread out.
    spread: float (optional, default 1.0)
        The effective scale of embedded points. In combination with ``min_dist``
        this determines how clustered/clumped the embedded points are.
    low_memory: bool (optional, default True)
        For some datasets the nearest neighbor computation can consume a lot of
        memory. If you find that UMAP is failing due to memory constraints
        consider setting this option to True. This approach is more
        computationally expensive, but avoids excessive memory use.
    set_op_mix_ratio: float (optional, default 1.0)
        Interpolate between (fuzzy) union and intersection as the set operation
        used to combine local fuzzy simplicial sets to obtain a global fuzzy
        simplicial sets. Both fuzzy set operations use the product t-norm.
        The value of this parameter should be between 0.0 and 1.0; a value of
        1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy
        intersection.
    local_connectivity: int (optional, default 1)
        The local connectivity required -- i.e. the number of nearest
        neighbors that should be assumed to be connected at a local level.
        The higher this value the more connected the manifold becomes
        locally. In practice this should be not more than the local intrinsic
        dimension of the manifold.
    repulsion_strength: float (optional, default 1.0)
        Weighting applied to negative samples in low dimensional embedding
        optimization. Values higher than one will result in greater weight
        being given to negative samples.
    negative_sample_rate: int (optional, default 5)
        The number of negative samples to select per positive sample
        in the optimization process. Increasing this value will result
        in greater repulsive force being applied, greater optimization
        cost, but slightly more accuracy.
    transform_queue_size: float (optional, default 4.0)
        For transform operations (embedding new points using a trained model_
        this will control how aggressively to search for nearest neighbors.
        Larger values will result in slower performance but more accurate
        nearest neighbor evaluation.
    a: float (optional, default None)
        More specific parameters controlling the embedding. If None these
        values are set automatically as determined by ``min_dist`` and
        ``spread``.
    b: float (optional, default None)
        More specific parameters controlling the embedding. If None these
        values are set automatically as determined by ``min_dist`` and
        ``spread``.
    random_state: int, RandomState instance or None, optional (default: None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.
    metric_kwds: dict (optional, default None)
        Arguments to pass on to the metric, such as the ``p`` value for
        Minkowski distance. If None then no arguments are passed on.
    angular_rp_forest: bool (optional, default False)
        Whether to use an angular random projection forest to initialise
        the approximate nearest neighbor search. This can be faster, but is
        mostly on useful for metric that use an angular style distance such
        as cosine, correlation etc. In the case of those metrics angular forests
        will be chosen automatically.
    target_n_neighbors: int (optional, default -1)
        The number of nearest neighbors to use to construct the target simplcial
        set. If set to -1 use the ``n_neighbors`` value.
    target_metric: string or callable (optional, default 'categorical')
        The metric used to measure distance for a target array is using supervised
        dimension reduction. By default this is 'categorical' which will measure
        distance in terms of whether categories match or are different. Furthermore,
        if semi-supervised is required target values of -1 will be trated as
        unlabelled under the 'categorical' metric. If the target array takes
        continuous values (e.g. for a regression problem) then metric of 'l1'
        or 'l2' is probably more appropriate.
    target_metric_kwds: dict (optional, default None)
        Keyword argument to pass to the target metric when performing
        supervised dimension reduction. If None then no arguments are passed on.
    target_weight: float (optional, default 0.5)
        weighting factor between data topology and target topology. A value of
        0.0 weights predominantly on data, a value of 1.0 places a strong emphasis on
        target. The default of 0.5 balances the weighting equally between data and
        target.
    transform_seed: int (optional, default 42)
        Random seed used for the stochastic aspects of the transform operation.
        This ensures consistency in transform operations.
    verbose: bool (optional, default False)
        Controls verbosity of logging.
    tqdm_kwds: dict (optional, defaul None)
        Key word arguments to be used by the tqdm progress bar.
    unique: bool (optional, default False)
        Controls if the rows of your data should be uniqued before being
        embedded.  If you have more duplicates than you have n_neighbour
        you can have the identical data points lying in different regions of
        your space.  It also violates the definition of a metric.
        For to map from internal structures back to your data use the variable
        _unique_inverse_.
    densmap: bool (optional, default False)
        Specifies whether the density-augmented objective of densMAP
        should be used for optimization. Turning on this option generates
        an embedding where the local densities are encouraged to be correlated
        with those in the original space. Parameters below with the prefix 'dens'
        further control the behavior of this extension.
    dens_lambda: float (optional, default 2.0)
        Controls the regularization weight of the density correlation term
        in densMAP. Higher values prioritize density preservation over the
        UMAP objective, and vice versa for values closer to zero. Setting this
        parameter to zero is equivalent to running the original UMAP algorithm.
    dens_frac: float (optional, default 0.3)
        Controls the fraction of epochs (between 0 and 1) where the
        density-augmented objective is used in densMAP. The first
        (1 - dens_frac) fraction of epochs optimize the original UMAP objective
        before introducing the density correlation term.
    dens_var_shift: float (optional, default 0.1)
        A small constant added to the variance of local radii in the
        embedding when calculating the density correlation objective to
        prevent numerical instability from dividing by a small number
    output_dens: float (optional, default False)
        Determines whether the local radii of the final embedding (an inverse
        measure of local density) are computed and returned in addition to
        the embedding. If set to True, local radii of the original data
        are also included in the output for comparison; the output is a tuple
        (embedding, original local radii, embedding local radii). This option
        can also be used when densmap=False to calculate the densities for
        UMAP embeddings.
    disconnection_distance: float (optional, default np.inf or maximal value for bounded distances)
        Disconnect any vertices of distance greater than or equal to disconnection_distance when approximating the
        manifold via our k-nn graph. This is particularly useful in the case that you have a bounded metric.  The
        UMAP assumption that we have a connected manifold can be problematic when you have points that are maximally
        different from all the rest of your data.  The connected manifold assumption will make such points have perfect
        similarity to a random set of other points.  Too many such points will artificially connect your space.
    precomputed_knn: tuple (optional, default (None,None,None))
        If the k-nearest neighbors of each point has already been calculated you
        can pass them in here to save computation time. The number of nearest
        neighbors in the precomputed_knn must be greater or equal to the
        n_neighbors parameter. This should be a tuple containing the output
        of the nearest_neighbors() function or attributes from a previously fit
        UMAP object; (knn_indices, knn_dists,knn_search_index).
    """
def points(
    umap_object,
    labels=None,
    values=None,
    theme=None,
    cmap="Blues",
    color_key=None,
    color_key_cmap="Spectral",
    background="white",
    width=800,
    height=800,
    show_legend=True,
    subset_points=None,
    ax=None,
    alpha=None,
):
    """Plot an embedding as points. Currently this only works
    for 2D embeddings. While there are many optional parameters
    to further control and tailor the plotting, you need only
    pass in the trained/fit umap model to get results. This plot
    utility will attempt to do the hard work of avoiding
    overplotting issues, and make it easy to automatically
    colour points by a categorical labelling or numeric values.
    This method is intended to be used within a Jupyter
    notebook with ``%matplotlib inline``.
    Parameters
    ----------
    umap_object: trained UMAP object
        A trained UMAP object that has a 2D embedding.
    labels: array, shape (n_samples,) (optional, default None)
        An array of labels (assumed integer or categorical),
        one for each data sample.
        This will be used for coloring the points in
        the plot according to their label. Note that
        this option is mutually exclusive to the ``values``
        option.
    values: array, shape (n_samples,) (optional, default None)
        An array of values (assumed float or continuous),
        one for each sample.
        This will be used for coloring the points in
        the plot according to a colorscale associated
        to the total range of values. Note that this
        option is mutually exclusive to the ``labels``
        option.
    theme: string (optional, default None)
        A color theme to use for plotting. A small set of
        predefined themes are provided which have relatively
        good aesthetics. Available themes are:
           * 'blue'
           * 'red'
           * 'green'
           * 'inferno'
           * 'fire'
           * 'viridis'
           * 'darkblue'
           * 'darkred'
           * 'darkgreen'
    cmap: string (optional, default 'Blues')
        The name of a matplotlib colormap to use for coloring
        or shading points. If no labels or values are passed
        this will be used for shading points according to
        density (largely only of relevance for very large
        datasets). If values are passed this will be used for
        shading according the value. Note that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.
    color_key: dict or array, shape (n_categories) (optional, default None)
        A way to assign colors to categoricals. This can either be
        an explicit dict mapping labels to colors (as strings of form
        '#RRGGBB'), or an array like object providing one color for
        each distinct category being provided in ``labels``. Either
        way this mapping will be used to color points according to
        the label. Note that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.
    color_key_cmap: string (optional, default 'Spectral')
        The name of a matplotlib colormap to use for categorical coloring.
        If an explicit ``color_key`` is not given a color mapping for
        categories can be generated from the label list and selecting
        a matching list of colors from the given colormap. Note
        that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.
    background: string (optional, default 'white)
        The color of the background. Usually this will be either
        'white' or 'black', but any color name will work. Ideally
        one wants to match this appropriately to the colors being
        used for points etc. This is one of the things that themes
        handle for you. Note that if theme
        is passed then this value will be overridden by the
        corresponding option of the theme.
    width: int (optional, default 800)
        The desired width of the plot in pixels.
    height: int (optional, default 800)
        The desired height of the plot in pixels
    show_legend: bool (optional, default True)
        Whether to display a legend of the labels
    subset_points: array, shape (n_samples,) (optional, default None)
        A way to select a subset of points based on an array of boolean
        values.
    ax: matplotlib axis (optional, default None)
        The matplotlib axis to draw the plot to, or if None, which is
        the default, a new axis will be created and returned.
    alpha: float (optional, default: None)
        The alpha blending value, between 0 (transparent) and 1 (opaque).
    Returns
    -------
    result: matplotlib axis
        The result is a matplotlib axis with the relevant plot displayed.
        If you are using a notebooks and have ``%matplotlib inline`` set
        then this will simply display inline.
    """

 

  • 6
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值