alexnet原理及tensorflow代码实现

现在开始看论文,第一篇就是alexnet,正好进行个整理,以及代码实现。
一、我就不讲alexnet的历史了,直接上网络:
alexnet是一种分类网络,有五层卷积层,三层全连接层构成。
二:细节:
输入是2242243的图片,第一层卷积核为1111,步长为44,padding为VALID,使用了96个卷积核,卷积结束后,224-11/4+1,大小为555596,再经过最大池化33的过滤器,步长为2,输出272796,再经过lrn层。
第二层与第一层类似,卷积核是5
5,步长11,使用256个卷积核,padding为SAME,输出是2727256,接着就是池化层与上面一样的参数,然后是lrn层。输出1313256.
第三四层相同,都是3
3的卷积核,使用384个卷积核,步长没有池化和lrn,最后输出1313384.
第五层,卷积核和步长
卷积与三四层区别就是用了256个卷积核。卷积运算后是最大池化。至此前面的卷积运算结束,最后输出66256的输出。
跟着三层全连接层,前两层参数是4096,最后一层是1000个神经元。
前两层全连接层在激活后还进行了dropout。注:测试时失活概率要为0(不失活)(原因:因为在测试时要尽量让所有神经元都发挥作用)
三、alexnet在那个时候领先的点:
(1)、用了dropout,有效的缓解了过拟合。
(2)、重叠池化,池化大小为3*3步长为2。这个有利于更好的获取特征。
以下为代码实现:
注:因为个人显卡因素,网络中的一些参数被缩小了。

import tensorflow as tf


def inference(images, batch_size, n_classes, keep_prob):
    """
    Build the model
    Args:
        images: image batch, 4D tensor, tf.float32, [batch_size, width, height, channels]
    Returns:
        output tensor with the computed logits, float, [batch_size, n_classes]
    """
    #conv1, shape = [kernel size, kernel size, channels, kernel numbers]

    with tf.variable_scope('conv1') as scope:
        weights = tf.get_variable('weights',
                                  shape = [11,11,3, 96],
                                  dtype = tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[96],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        conv = tf.nn.conv2d(images, weights, strides=[1, 4, 4, 1], padding='VALID')
        pre_activation = tf.nn.bias_add(conv, biases)
        conv1 = tf.nn.relu(pre_activation, name= scope.name)

    #pool1 and norm1
    with tf.variable_scope('pooling1_lrn') as scope:
        pool1 = tf.nn.max_pool(conv1, ksize=[1,3,3,1],strides=[1,2,2,1],
                               padding='VALID', name='pooling1')
        norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0,
                          beta=0.75,name='norm1')

    #conv2
    with tf.variable_scope('conv2') as scope:
        weights = tf.get_variable('weights',
                                  shape=[5,5,96,256],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[256],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        conv = tf.nn.conv2d(norm1, weights, strides=[1,1,1,1],padding='SAME')
        pre_activation = tf.nn.bias_add(conv, biases)
        conv2 = tf.nn.relu(pre_activation, name='conv2')

    #pool2 and norm2
    with tf.variable_scope('pooling2_lrn') as scope:
        norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,
                          beta=0.75,name='norm2')
        pool2 = tf.nn.max_pool(norm2, ksize=[1,3,3,1], strides=[1,1,1,1],
                               padding='SAME',name='pooling2')
    #conv3
    with tf.variable_scope('conv3') as scope:
        weights = tf.get_variable('weights',
                                  shape=[3, 3, 256, 384],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[384],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        conv = tf.nn.conv2d(pool2, weights, strides=[1, 1, 1, 1], padding='SAME')
        pre_activation = tf.nn.bias_add(conv, biases)
        conv3 = tf.nn.relu(pre_activation, name='conv3')

    # conv4
    with tf.variable_scope('conv4') as scope:
        weights = tf.get_variable('weights',
                                    shape=[3, 3, 384, 384],
                                    dtype=tf.float32,
                                    initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
        biases = tf.get_variable('biases',
                                     shape=[384],
                                     dtype=tf.float32,
                                     initializer=tf.constant_initializer(0.1))
        conv = tf.nn.conv2d(conv3, weights, strides=[1, 1, 1, 1], padding='SAME')
        pre_activation = tf.nn.bias_add(conv, biases)
        conv4 = tf.nn.relu(pre_activation, name='conv4')

    #conv5
    with tf.variable_scope('conv5') as scope:
        weights = tf.get_variable('weights',
                                    shape=[3, 3, 384, 256],
                                    dtype=tf.float32,
                                    initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
        biases = tf.get_variable('biases',
                                     shape=[256],
                                     dtype=tf.float32,
                                     initializer=tf.constant_initializer(0.1))
        conv = tf.nn.conv2d(conv4, weights, strides=[1, 1, 1, 1], padding='SAME')
        pre_activation = tf.nn.bias_add(conv, biases)
        conv5 = tf.nn.relu(pre_activation, name='conv5')

    with tf.variable_scope('pooling5') as scope:
        pool5 = tf.nn.max_pool(conv5, [1, 3, 3, 1], [1, 2, 2, 1],padding='SAME',name='pool5')


    #local1
    with tf.variable_scope('local1') as scope:
        reshape = tf.reshape(pool5, shape=[batch_size, -1])
        dim = reshape.get_shape()[1].value
        weights = tf.get_variable('weights',
                                  shape=[dim,512],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[512],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        local1 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name='local1')
        local1 = tf.nn.dropout(local1, keep_prob=keep_prob)
    #local2
    with tf.variable_scope('local2') as scope:
        weights = tf.get_variable('weights',
                                  shape=[512,512],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[512],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        local2 = tf.nn.relu(tf.matmul(local1, weights) + biases, name='local2')
        local2 = tf.nn.dropout(local2, keep_prob=keep_prob)
    #local3
    with tf.variable_scope('local3') as scope:
        weights = tf.get_variable('weights',
                                  shape=[512, 100],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[100],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        local3 = tf.nn.relu(tf.matmul(local2, weights) + biases, name='local3')
    #softmax_linear
    with tf.variable_scope('softmax_linear') as scope:
        weights = tf.get_variable('weights',
                                  [100, n_classes],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[n_classes],
                                 dtype = tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        softmax_linear = tf.matmul(local3, weights) + biases
    return softmax_linear


def losses(logits, labels):
    """
    Compute loss from logits and labels
    Args:
        logits: logits tensor, float, [batch_size, n_classes]
        labels: label tensor, tf.int32, [batch_size]
    Returns:
        loss tensor of float type
    """
    with tf.variable_scope('loss') as scope:
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits\
                        (logits=logits, labels=labels, name='xentropy_per_example')
        loss = tf.reduce_mean(cross_entropy, name='loss')
        tf.summary.scalar(scope.name+'/loss', loss)
    return loss


def trainning(loss, learning_rate):
    """
    Training ops, the Op returned by this function is what must be passed to
        'sess.run()' call to cause the model to train.
    Args:
        loss: loss tensor, from losses()
    Returns:
        train_op: The op for trainning
    """
    with tf.name_scope('optimizer'):
        optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)
        global_step = tf.Variable(0, name='global_step', trainable=False)
        train_op = optimizer.minimize(loss, global_step= global_step)
    return train_op


def evaluation(logits, labels):
    """
    Evaluate the quality of the logits at predicting the label.
    Args:
        logits: Logits tensor, float - [batch_size, NUM_CLASSES].
        labels: Labels tensor, int32 - [batch_size], with values in the
        range [0, NUM_CLASSES).
    Returns:
        A scalar int32 tensor with the number of examples (out of batch_size)
        that were predicted correctly.
    """
    with tf.variable_scope('accuracy') as scope:
        correct = tf.nn.in_top_k(logits, labels, 1)
        correct = tf.cast(correct, tf.float16)
        accuracy = tf.reduce_mean(correct)
        tf.summary.scalar(scope.name+'/accuracy', accuracy)
    return accuracy
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值