摘要:拖延(procrastination)是人类目前较为流行的行为问题之- -。拖延通常被界定为,尽管提前预见到拖延会导致不利后果,但仍然自愿推迟(postpone)开始或完成某- -计划任务的行为(Steel, 2007)。拖延行为具有跨文化的一*致性,并在个体身上表现为- -种稳定的特质倾向(Steel,2007; Steel & Ferrari, 2013)。严重的拖延行为不仅会导致人们更差的学业、工作表现以及更低社会经济地位,甚至还会损害人们的身心健康(Rozental & Carlbring, 2014)。流行病学调查的结果显示,15-20%的成 年个体存在慢性拖延(chronic procrastination);而在学生群体中,超过70%的学生承认自己曾经存在学业拖延行为,甚至部分学生出现了持续性、问题性的拖延行为(Day, Mensink, & O'Sullivan, 2000; Steel, 2007)。随着工业化时代的竞争不断加剧,任务的时间要求不断提升,拖延行为问题在全球范围内呈现出了不断上升的趋势(Rozental&Carlbring, 2014)。因此,探明拖延行为产生的心理机制及其认知神经基础,开发有效的拖延干预方案(包括心理训练和神经调控),具有很高的科学价值和重要的实践意义。已有研究从行为角度探索了拖延的认知机制(如时间动机理论、情绪修复理论及时间决策理论等)及影响因素(如特质性因素与能力性因素等),并从神经基础的视角揭示了部分脑区的神经结构或神经功能异常与拖延行为的显著关联(如参与自我控制的左侧背外侧前额叶、前扣带回:参与情绪编码调控的眶额叶:参与预期想象与预期情绪的腹内侧前额叶及海马(Chen, Liu, Zhang,& Feng, 2020; Hu, Liu, Guo, & Feng, 2018)。然而,先前研究大多从单个心理变量或有限的几个心理成分出发来考察拖延行为的认知机制及影响因素,缺乏从多变量分析视角来对拖延行为的核心心理成分进行全面无偏的描述。其次,先前研究很少从神经多模态组学的角度来系统地考察拖延行为的神经基础。更重要的是,多模态神经连接组学(neural connectome)和计算神经科学(neurocomputational science)技术能够为系统性地揭示个体行为提供更稳健(robust)的神经标记物(biomarkers),进而更好地解释拖延行为产生的神经基础。再次,尽管拖延行为具有稳定的神经基础,但先前研究仍缺乏对拖延行为个体建立准确预测的神经预测模型。最后,在目前拖延研究领域内,尚无研究者提供有效的神经调控方案来干预个体的拖延行为。
因此,为揭示拖延行为的核心心理成分及多模态神经基础并实现对拖延行为问题个体有效的神经预测与神经调控,本研究从拖延行为的心理成分(描述)、多模态神经基础(解释)、神经预测模型(预测)及神经调控(干预)四个层次来对这一问题进行系统性地研究。首先,研究1从拖延的行为学理论出发,基于自由模型驱动(model-free)的拓扑图论网络算法(graphtheoretical model),通过考察拖延关联的心理变量的网络拓扑结构来揭示拖延行为产生的核心心理成分。其次,研究2基于神经连接组学和计算神经科学来揭示拖延行为的多模态神经基础。具体而言,研究2主要(1)从神经灰质结构形态学(GM morphological dynamics)角度探测拖延行为的神经基础; (2)从神经 白质纤维结构连接( WM fiber connection)模式角度探究拖延行为的神经基础: (3)从大尺 度固有功能网络(intrinsic large-scale brain functional networks)的效用连接(effective connections) 及去卷积的神经动力学(de-convolution neural dynamics)连接模式角度