浅谈电磁学——高斯定理 环路定理

本文深入浅出地探讨了电磁学中的高斯定理和环路定理。首先介绍了电场线的概念及其意义,接着详细阐述了电通量的定义,并通过证明高斯定理展示其在静电场中的应用,如求解均匀带电球壳和球体的电场分布。此外,还解释了环路定理,说明静电场中不存在闭合电场线。最后讨论了电场线的疏密与电场强度的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章:
浅谈电磁学——基本电现象
浅谈电磁学——电场
浅谈电磁学——高斯定理 环路定理

一、电场线

为了形象地描述电场,人们引入了电场线的概念。

电场线是在电场中的曲线,它的切线处处平行于场强。

也就是说,电场线可以用来描述电场方向。

需要注意的是,电场线并不实际存在,是人为规定的。

以下是常见的一些电场线:
常见的电场线
第一行最后一幅图就是电偶极子产生的电场。

二、电通量

电场是矢量场,和流速场、重力场是相似的。既然流速场中有流量,那么电场中也应该有电通量。

电场虽然没有东西在流动,但是仍能够定义电通量。

设微小曲面 d S {\rm d}S dS,法向量为 n \bm n n,场强为 E \bm E E E \bm E E n \bm n n的夹角为 θ \theta θ,则电通量 d Φ E {\rm d}\varPhi_\bm E dΦE定义为 d Φ E = E d S cos ⁡ θ = E ∙ n d S {\rm d}\varPhi_\bm E=E{\rm d}S\cos\theta=\bm E\bullet\bm n{\rm d}S dΦE=EdScosθ=EndS如果定义面元 d S = n d S {\rm d}\bm S=\bm n{\rm d}S dS=ndS,那么 d Φ E = E ∙ d S {\rm d}\varPhi_\bm E=\bm E\bullet{\rm d}\bm S dΦE=EdS。对于曲面 S S S,电通量为 Φ E = ∬ S E ∙ d S \varPhi_\bm E=\iint_S{\bm E\bullet{\rm d}\bm S} ΦE=SEdS

三、高斯定理

在静电场中,任何一闭合曲面的电通量等于其包含的电荷量的 1 / ε 0 1/\varepsilon_0 1/ε0倍。

这一定理被称作高斯定理。下面证明这个定理。

考虑只有一个点电荷 q q q的情形。
Φ E = ∯ S E ∙ d S = ∯ S 1 4 π ε 0 q d S cos ⁡ θ r 2 = q 4 π ε 0 ∯ S d S cos ⁡ θ r 2 \varPhi_\bm E=\oiint_S{\bm E\bullet{\rm d}\bm S}=\oiint_S{\frac1{4\pi\varepsilon_0}\frac{q{\rm d}S\cos\theta}{r^2}}=\frac q{4\pi\varepsilon_0}\oiint_S{\frac{ {\rm d}S\cos\theta}{r^2}} ΦE= SEdS= S4πε01r2qdScosθ=4πε0q S

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值