如何理解对数公式:
a ⋅ l n x = l n x a a \cdot ln^x = lnx^a a⋅lnx=lnxa
为了方便观看,后续 ln 使用 e x p exp exp 函数代替,即:
a ⋅ e x p ( x ) = e x p ( x a ) a \cdot exp(x) = exp(x^a) a⋅exp(x)=exp(xa)
理解该公式要先回溯到幂函数的一个换算:
x a b = ( x a ) b ,记作 A x^{ab}=(x^a)^b,记作 A xab=(xa)b,记作A
接着换算 l n x ln^x lnx:
e x p ( x ) = e x p ( x ) x = e e x p ( x ) ,记作 B \begin{aligned} exp(x) &= exp(x) \\ x &= e^{exp(x)},记作 B \end{aligned} exp(x)x=exp(x)=eexp(x),记作B
当我们把 x a x^a xa 看做一个整体,带入 B 式子可得:
x a = e e x p ( x a ) x^a = e^{exp(x^a)} xa=eexp(xa)
当我们把 x a x^a xa 中的 x 单独使用 B 式子换算可得:
x a = ( e e x p ( x ) ) a 由 A 式得: x a = e a ⋅ e x p ( x ) \begin{aligned} x^a &= ( e^{exp(x)} )^a \\ 由 A 式得:x^a &= e^{a \cdot exp(x)} \end{aligned} xa由A式得:xa=(eexp(x))a=ea⋅exp(x)
所以得到:
e e x p ( x a ) = e a ⋅ e x p ( x ) e x p ( x a ) = a ⋅ e x p ( x ) \begin{aligned} e^{exp(x^a)} &= e^{a \cdot exp(x)} \\ exp(x^a) &= a \cdot exp(x) \end{aligned} eexp(xa)exp(xa)=ea⋅exp(x)=a⋅exp(x)
打完收工。O(∩_∩)O哈哈~
参考
- https://www.quora.com/Is-there-any-explanation-of-the-property-a-ln-x-ln-x-a