理解 aln(x) 为什么等于 ln(x^a)

如何理解对数公式:

a ⋅ l n x = l n x a a \cdot ln^x = lnx^a alnx=lnxa

为了方便观看,后续 ln 使用 e x p exp exp 函数代替,即:

a ⋅ e x p ( x ) = e x p ( x a ) a \cdot exp(x) = exp(x^a) aexp(x)=exp(xa)

理解该公式要先回溯到幂函数的一个换算:

x a b = ( x a ) b ,记作 A x^{ab}=(x^a)^b,记作 A xab=(xa)b,记作A

接着换算 l n x ln^x lnx

e x p ( x ) = e x p ( x ) x = e e x p ( x ) ,记作 B \begin{aligned} exp(x) &= exp(x) \\ x &= e^{exp(x)},记作 B \end{aligned} exp(x)x=exp(x)=eexp(x),记作B

当我们把 x a x^a xa 看做一个整体,带入 B 式子可得:

x a = e e x p ( x a ) x^a = e^{exp(x^a)} xa=eexp(xa)

当我们把 x a x^a xa 中的 x 单独使用 B 式子换算可得:

x a = ( e e x p ( x ) ) a 由 A 式得: x a = e a ⋅ e x p ( x ) \begin{aligned} x^a &= ( e^{exp(x)} )^a \\ 由 A 式得:x^a &= e^{a \cdot exp(x)} \end{aligned} xaA式得:xa=(eexp(x))a=eaexp(x)

所以得到:

e e x p ( x a ) = e a ⋅ e x p ( x ) e x p ( x a ) = a ⋅ e x p ( x ) \begin{aligned} e^{exp(x^a)} &= e^{a \cdot exp(x)} \\ exp(x^a) &= a \cdot exp(x) \end{aligned} eexp(xa)exp(xa)=eaexp(x)=aexp(x)

打完收工。O(∩_∩)O哈哈~

参考

  • https://www.quora.com/Is-there-any-explanation-of-the-property-a-ln-x-ln-x-a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值