级数收敛判断方法

正项级数

比较判别法

∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn ∑ n = 1 ∞ y n \sum_{n=1}^\infty y_n n=1yn 是两个正项级数,若存在常数 λ > 0 \lambda>0 λ>0,使得
x n ≤ A y n , n = 1 , 2 , ⋯   , x_n\le Ay_n,\qquad n=1,2,\cdots, xnAyn,n=1,2,,

  1. ∑ n = 1 n y n \sum_{n=1}^n y_n n=1nyn收敛时, ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn也收敛
  2. ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn发散时, ∑ n = 1 n y n \sum_{n=1}^n y_n n=1nyn也发散

极限判别法的极限形式

∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn ∑ n = 1 ∞ y n \sum_{n=1}^\infty y_n n=1yn 是两个正项级数,且
lim ⁡ n → ∞ x n y n = l ( 0 ≤ l ≤ + ∞ ) , \lim_{n\to\infty}\frac{x_n}{y_n}=l\qquad(0\le l\le+\infty), nlimynxn=l(0l+),

  1. 0 ≤ l < + ∞ 0\le l<+\infty 0l<+,则当 ∑ n = 1 n y n \sum_{n=1}^n y_n n=1nyn 收敛时, ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn 也收敛
  2. 0 < l ≤ + ∞ 0< l\le+\infty 0<l+,则当 ∑ n = 1 n y n \sum_{n=1}^n y_n n=1nyn 发散时, ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn 也发散
  3. 0 < l < + ∞ 0< l<+\infty 0<l<+ ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn ∑ n = 1 n y n \sum_{n=1}^n y_n n=1nyn 同时收敛或同时发散

Cauchy 判别法(柯西判别法)

∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn 是正项级数, r = lim ⁡ ‾ n → ∞ x n n r=\overline{ \lim}_{n\to\infty}\sqrt[n]{x_n} r=limnnxn ,则

  1. r < 1 r<1 r<1 时,级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn 收敛
  2. r > 1 r>1 r>1 时,级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn 发散
  3. r = 1 r=1 r=1 时,判别法失效,即级数可能收敛,也可能发散

d’Alembert 判别法(达朗贝尔判别法)

∑ n = 1 ∞ x n    ( x n ≠ 0 ) \sum_{n=1}^{\infty} x_n\ \ (x_n\ne 0) n=1xn  (xn=0)是正项级数,则

  1. lim ⁡ ‾ n → ∞ = r ‾ < 1 \overline{ \lim}_{n\to\infty}=\overline{r}<1 limn=r<1时,级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn 收敛
  2. lim ⁡ ‾ n → ∞ = r ‾ < 1 \underline{ \lim}_{n\to\infty} = \underline{r}<1 limn=r<1时,级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn 发散
  3. r ‾ ≥ 1 \overline{r}\ge1 r1 r ‾ ≤ 1 \underline{r}\le1 r1 时,判别法失效,即级数可能收敛,也可能发散

Raabe 判别法 (拉比判别法)

∑ n = 1 ∞ x n    ( x n ≠ 0 ) \sum_{n=1}^{\infty} x_n\ \ (x_n\ne 0) n=1xn  (xn=0) 是正项级数, lim ⁡ n → ∞ n ( x n x n + 1 − 1 ) = r \lim_{n\to\infty}n\left(\frac{x_n}{x_{n+1}}-1\right)=r limnn(xn+1xn1)=r ,则:

  1. r > 1 r>1 r>1 时,级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn 收敛
  2. r < 1 r<1 r<1 时,级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n n=1xn 发散
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值