正项级数
比较判别法
设
∑
n
=
1
∞
x
n
\sum_{n=1}^{\infty} x_n
∑n=1∞xn 与
∑
n
=
1
∞
y
n
\sum_{n=1}^\infty y_n
∑n=1∞yn 是两个正项级数,若存在常数
λ
>
0
\lambda>0
λ>0,使得
x
n
≤
A
y
n
,
n
=
1
,
2
,
⋯
,
x_n\le Ay_n,\qquad n=1,2,\cdots,
xn≤Ayn,n=1,2,⋯,
则
- 当 ∑ n = 1 n y n \sum_{n=1}^n y_n ∑n=1nyn收敛时, ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n ∑n=1∞xn也收敛
- 当 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n ∑n=1∞xn发散时, ∑ n = 1 n y n \sum_{n=1}^n y_n ∑n=1nyn也发散
极限判别法的极限形式
设
∑
n
=
1
∞
x
n
\sum_{n=1}^{\infty} x_n
∑n=1∞xn 与
∑
n
=
1
∞
y
n
\sum_{n=1}^\infty y_n
∑n=1∞yn 是两个正项级数,且
lim
n
→
∞
x
n
y
n
=
l
(
0
≤
l
≤
+
∞
)
,
\lim_{n\to\infty}\frac{x_n}{y_n}=l\qquad(0\le l\le+\infty),
n→∞limynxn=l(0≤l≤+∞),
则
- 若 0 ≤ l < + ∞ 0\le l<+\infty 0≤l<+∞,则当 ∑ n = 1 n y n \sum_{n=1}^n y_n ∑n=1nyn 收敛时, ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n ∑n=1∞xn 也收敛
- 若 0 < l ≤ + ∞ 0< l\le+\infty 0<l≤+∞,则当 ∑ n = 1 n y n \sum_{n=1}^n y_n ∑n=1nyn 发散时, ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n ∑n=1∞xn 也发散
- 若 0 < l < + ∞ 0< l<+\infty 0<l<+∞, ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n ∑n=1∞xn 与 ∑ n = 1 n y n \sum_{n=1}^n y_n ∑n=1nyn 同时收敛或同时发散
Cauchy 判别法(柯西判别法)
设 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n ∑n=1∞xn 是正项级数, r = lim ‾ n → ∞ x n n r=\overline{ \lim}_{n\to\infty}\sqrt[n]{x_n} r=limn→∞nxn,则
- 当 r < 1 r<1 r<1 时,级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n ∑n=1∞xn 收敛
- 当 r > 1 r>1 r>1 时,级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n ∑n=1∞xn 发散
- 当 r = 1 r=1 r=1 时,判别法失效,即级数可能收敛,也可能发散
d’Alembert 判别法(达朗贝尔判别法)
设 ∑ n = 1 ∞ x n ( x n ≠ 0 ) \sum_{n=1}^{\infty} x_n\ \ (x_n\ne 0) ∑n=1∞xn (xn=0)是正项级数,则
- 当 lim ‾ n → ∞ = r ‾ < 1 \overline{ \lim}_{n\to\infty}=\overline{r}<1 limn→∞=r<1时,级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n ∑n=1∞xn 收敛
- 当 lim ‾ n → ∞ = r ‾ < 1 \underline{ \lim}_{n\to\infty} = \underline{r}<1 limn→∞=r<1时,级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n ∑n=1∞xn 发散
- 当 r ‾ ≥ 1 \overline{r}\ge1 r≥1 或 r ‾ ≤ 1 \underline{r}\le1 r≤1 时,判别法失效,即级数可能收敛,也可能发散
Raabe 判别法 (拉比判别法)
设 ∑ n = 1 ∞ x n ( x n ≠ 0 ) \sum_{n=1}^{\infty} x_n\ \ (x_n\ne 0) ∑n=1∞xn (xn=0) 是正项级数, lim n → ∞ n ( x n x n + 1 − 1 ) = r \lim_{n\to\infty}n\left(\frac{x_n}{x_{n+1}}-1\right)=r limn→∞n(xn+1xn−1)=r ,则:
- 当 r > 1 r>1 r>1 时,级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n ∑n=1∞xn 收敛
- 当 r < 1 r<1 r<1 时,级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty} x_n ∑n=1∞xn 发散