在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差,
大部分品种如当日未售出,隔日就无法再售。因此,商超通常会根据各商品的历史销售和需
求情况每天进行补货。
由于商超销售的蔬菜品种众多、产地不尽相同,而蔬菜的进货交易时间通常在凌晨 3:00-
4:00,为此商家须在不确切知道具体单品和进货价格的情况下,做出当日各蔬菜品类的补货
决策。蔬菜的定价一般采用“成本加成定价”方法,商超对运损和品相变差的商品通常进行
打折销售。可靠的市场需求分析,对补货决策和定价决策尤为重要。从需求侧来看,蔬菜类
商品的销售量与时间往往存在一定的关联关系;从供给侧来看,蔬菜的供应品种在 4 月至 10
月较为丰富,商超销售空间的限制使得合理的销售组合变得极为重要。
附件 1 给出了某商超经销的 6 个蔬菜品类的商品信息;附件 2 和附件 3 分别给出了该
商超 2020 年 7 月 1 日至 2023 年 6 月 30 日各商品的销售流水明细与批发价格的相关数据;
附件 4 给出了各商品近期的损耗率数据。请根据附件和实际情况建立数学模型解决以下问
题:
问题 1 蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各品类及单品销售量的分布规律及相互关系。
问题1涉及蔬菜品类的销售量分布规律以及不同品类或不同单品之间的关联关系。以下是一些分析步骤和方法:
销售量分布规律:
统计描述: 首先,对每个蔬菜品类的销售量进行统计描述,包括均值、方差、峰度、偏度等统计指标。这可以帮助你了解每个品类销售量的整体分布情况。
时间序列分析: 将销售数据按时间进行排序并绘制销售趋势图。这有助于发现销售季节性、趋势性和周期性变化。
柱状图或箱线图: 可以绘制柱状图或箱线图,展示每个蔬菜品类销售量的分布情况,以便观察是否存在离群值。
关联关系分析:
相关性分析: 使用相关性分析(如皮尔逊相关系数)来量化不同蔬菜品类之间的线性相关性。计算不同品类销售量之间的相关系数,了解它们之间是否存在正相关、负相关或无关系。
散点图: 绘制散点图来可视化不同品类销售量之间的关系。这可以帮助你观察是否存在一定的关联趋势。
时间序列交叉相关性: 如果可用,可以分析不同品类销售量的时间序列交叉相关性,以确定它们之间是否存在滞后相关性。
因果关系: 考虑分析可能导致销售量相关性的因素,如促销活动、季节性因素、天气等。
分析结果可能会提供以下洞察:
哪些蔬菜品类具有较高的销售量,哪些品类销售较少?
是否存在季节性销售波动,例如春季或夏季销售是否更高?
是否存在正相关或负相关的品类,即某些品类的销售量是否随其他品类的销售量而变化?
是否存在特定事件或因素,例如促销活动,对销售量产生显著影响?
问题2 考虑商超以品类为单位做补货计划,请分析各蔬菜品类的销售总量与成本加成定价的关系,并给出各蔬菜品类未来一周(2023 年 7 月 1-7 日)的日补货总量和定价策略,使得商超收益最大。
首先,需要建立一个蔬菜品类的销售量与成本加成定价的数学模型,考虑到销售量和价格之间的关系。可以使用线性回归模型或其他合适的模型来拟合销售量和价格之间的关系。
接下来,为了确定未来一周的日补货总量和定价策略以最大化商超的收益,可以使用优化算法(例如线性规划、整数规划等)来求解最优的补货数量和价格。优化的目标函数可以设置为最大化总收益,其中总收益等于销售收入减去成本。需要考虑销售量、价格、成本和其他相关因素。
销售总量与成本加成定价关系分析:
销售量与价格的关系: 首先,对每个蔬菜品类的销售总量和定价数据进行统计分析。可以绘制销售总量与定价之间的散点图,以观察它们之间是否存在相关性。使用线性回归或其他回归分析方法来建立销售量与价格之间的数学模型。
成本加成定价策略: 了解商超采用的成本加成定价策略,包括成本元素、利润率和定价规则。这可以通过与商超管理层或相关人员进行沟通来获取。
成本数据: 获取每个品类的进货成本、运输成本和其他相关成本数据。
定价策略制定:
目标函数定义: 建立一个数学优化模型,以最大化商超的总收益。总收益等于销售收入减去成本。目标函数可以表示为总收益 = 销售量 × (定价 - 成本)。
约束条件: 添加约束条件,确保补货计划和定价策略符合商超的要求和限制,例如库存上限、单品数量范围、最小陈列量等。
优化求解: 使用优化算法(如线性规划、整数规划等)求解模型,以确定未来一周每个品类的日补货总量和定价策略。
灵敏性分析: 进行灵敏性分析,评估不同参数值对最优解的影响,以确定最佳的定价和补货策略。
可视化结果: 可以将最优的定价和补货策略可视化,以便商超管理层更好地理解和执行。
未来一周的日补货总量和定价策略:
根据优化模型的结果,确定未来一周(2023 年 7 月 1-7 日)每个品类的日补货总量和建议的定价策略,以最大化商超的收益。
考虑销售趋势、季节性因素和市场需求,确保定价和补货计划能够适应不同时间段的变化。
监测和记录执行结果,以便后续调整和改进策略。
分析结果将为商超提供未来一周内的销售和定价计划,以最大化收益并同时满足市场需求。这将有助于合理定价和库存管理,提高经济效益。