LoRA技术详解---附实战代码

LoRA技术详解—附实战代码

image-20241008195025957

引言

随着大语言模型规模的不断扩大,如何高效地对这些模型进行微调成为了一个重要的技术挑战。Low-Rank Adaptation(LoRA)技术应运而生,它通过巧妙的低秩分解方法,显著减少了模型微调时需要训练的参数数量,同时保持了良好的性能表现。本文将深入介绍LoRA的原理,并通过详细的PyTorch代码实现来展示其工作机制。

LoRA的核心原理

基本思想

LoRA的核心思想是:在保持预训练模型权重不变的情况下,通过向每个转换器层添加低秩矩阵来实现模型的适应性调整。具体来说,对于原始的权重矩阵 W 0 ∈ R d × k W_0 \in \mathbb{R}^{d \times k} W0Rd×k,LoRA引入了如下的更新机制:

W = W 0 + Δ W = W 0 + B A W = W_0 + \Delta W = W_0 + BA W=W0+ΔW=W0+BA

其中:

  • B
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值