在点云索引,查找最近邻和范围搜索,最常用、高效的手段就是构建kd-tree。
kd-tree,是k维的二叉树。其中的每一个节点都是k维的数据,对于点云处理,使用的则是3维kd树。kd-tree的构建就是按照某种顺序将无序化的点云进行有序化排列。
kd-tree的数据结构:
struct kdtree{
Node-data - 数据矢量 数据集中某个数据点,是n维矢量(这里也就是k维)
Range - 空间矢量 该节点所代表的空间范围
split - 整数 垂直于分割超平面的方向轴序号
Left - kd树 由位于该节点分割超平面左子空间内所有数据点所构成的k-d树
Right - kd树 由位于该节点分割超平面右子空间内所有数据点所构成的k-d树
parent - kd树 父节点
}
算法构建流程:
Input: 无序化的点云,维度k
Output:点云对应的k维的kd-tree
Algorithm:
1、初始化分割轴:对每个维度的数据进行方差的计算,取最大方差的维度作为分割轴,标记为r;
2、确定节点:对当前数据按分割轴维度进行检索,找到中位数数据,并将其放入到当前节点上;
3、划分双支:
划分左支:在当前分割轴维度,所有小于中位数的值划分到左支中;
划分右支:在当前分割轴维度,所有大于等于中位数的值划分到右支中。
4、更新分割轴:r = (r + 1) % k;
5、确定子节点:
确定左节点:在左支的数据中进行步骤2;
确定右节点:在右支的数据中进行步骤2;
总结:方差较大的作为待分割的轴(可以有效减小搜索时间),具体以该维度的中位数节点作为分割点,然后根据中位数将样本数据分割到左、右枝,重复以上步骤。