1.研究背景
随着全球能源需求的增长以及环境保护的压力,综合能源系统(IES)成为了实现能源可持续发展的关键方案之一。IES通过集成多种能源资源,优化能源的产、供、存、消过程,提高能源利用效率,减少环境污染。然而,可再生能源的高度不确定性和负荷需求的波动为IES的优化调度带来了巨大挑战,尤其是在多时间尺度下考虑不确定性因素,如何实现能源系统的高效、可靠运行成为了研究的热点。
2.主要研究进展
2.1不确定性建模
随机规划:通过对不确定参数进行概率分布建模,采用随机规划方法处理IES优化问题,以应对不确定性带来的影响【1】。
鲁棒优化:在不确定性建模中采用鲁棒优化方法,通过构建不确定参数的不确定集,确保在最坏情况下仍能获得可行的解【2】。
2.2多时间尺度调度策略
长期优化:关注于系统的容量规划和扩展策略,确保能源系统能满足长期的能源需求【3】。
中短期优化:结合天气预报和负荷预测信息,优化中短期内的能源生产和消费计划【4】。
实时调度:基于实时数据,动态调整能源供给,以应对突发事件和实时变化【5】。
3.存在的挑战
不确定性建模的准确性:不确定性因素的准确建模对于优化结果的可靠性至关重要,如何精确描述和预测这些不确定性因素仍是一个挑战。
多时间尺度决策的整合:如何有效整合长期规划与短期调度决策,以实现在不同时间尺度下的优化目标,仍然