小波变换是一种用于信号分析的数学工具,它能够将信号分解为不同尺度上的逼近和细节信息。小波分解与重构是小波变换的核心应用,广泛用于信号去噪、压缩等领域。本节,我们将基于小波变换原理,探讨如何去除心电信号中的基线漂移并进行去噪处理。
1. 小波变换与阈值去噪算法原理
1.1 写在前面,便于理解
简单来说,小波变换的作用就是将输入信号分解为一系列不同尺度和频率成分的信号。通过这种分解,可以更清晰地分析信号的局部特征和变化细节。
图1 信号分解的时频方向
具体来说,小波变换将信号分解为逼近信号和细节信号,逼近信号反映了信号的整体趋势和主要特征,而细节信号则包含了信号的局部变化和噪声成分。
图2 小波分解结构图
这样,我们就可以根据需要对不同尺度和频率成分的信号进行处理,例如在去噪过程中,可以对细节信号进行阈值处理,以去除噪声并保留有用信号。
1.2 小波变换
1.2.1 波函数与尺度函数
(1)小波函数(Wavelet Function)
小波函数 它用于表示信号在高频部分的细节(即信号的细节部分)。小波函数的主要作用是对信号进行高频细节的提取,它是尺度函数的高频对比。小波函数具有很强的时频局部化能力,能够同时反映信号的时间和频率局部特征。它是一个在时间和频率上都具有局部性的函数,通常具有紧支撑特性。小波函数通过对母小波(母函数)进行伸缩和平移得到。其数学表达式为:
其中,
是尺度参数,控制小波的伸缩。当
时,小波被拉伸,对应信号中的低频成分;当
时,小波被压缩,对应信号的高频成分。
是平移参数,控制小波的位置,决定了小波在时间轴上的移动;
是母小波函数(也叫小波基函数,简称小波基,是小波变换的基础(如何对小波基进行选择会在后文补充)。
(2)尺度函数(Scaling Function)
尺度函数通常用 来表示,它用于表示信号在低频部分的特征(即信号的逼近部分)。通过尺度函数,可以构建出信号在不同尺度下的逼近信息。尺度函数是用于生成信号的低频特征的基函数。数学上,尺度函数通常满足平移不变性,即其在不同位置的平移和缩放可以用于生成不同尺度的逼近,通常与小波函数相关联。其数学表达式为:
其中,
是母尺度函数。
参数 可以对小波函数进行拉伸和压缩,通过控制参数
和
对母函数进行平移和伸缩,从而得到小波函数。如下图左侧所示,拉伸后的小波函数可以量化信号中的缓变信息,对应信号中低频成分;如下图右侧所示,压缩后的小波函数可以量化信号中的突变信息,对应信号中高频成分。
图3 参数 对小波基的拉伸与压缩得到小波函数
再让输入信号和小波函数做卷积,将输入信号分解为一系列的信号。
图4 小波函数与原始信号的卷积
1.3 小波分解
1.3.1 小波分解原理
(1)小波分解基本思想
小波分解的基本过程是通过对信号进行滤波,将信号分解成不同频带的成分。每一次分解都包括两个步骤:1、低频部分(逼近信息)通过尺度函数滤波得到。2、高频部分(细节信息)通过小波函数滤波得到。
在每一层分解中,低频部分会继续进行下一次分解,而高频部分被提取为细节信息。
(2)小波分解数学过程
设原始信号为 ,在进行第
层的小波分解时,信号首先被分解为逼近信息(低频部分)和细节信息(高频部分)。这两个部分通过滤波器对信号进行处理,公式如下:
- 第
层逼近信息(低频部分):
其中, 是尺度函数(低通滤波器)的系数,用于捕捉信号的低频部分(平滑信息)。尺度函数的作用是对信号进行平滑处理,提取信号的主结构。
是上一层的逼近系数。
- 第
层细节信息(高频部分):
其中, 是小波函数(高通滤波器)的系数,用于捕捉信号的高频部分(细节信息)。小波函数的作用是捕捉信号的变化或细节,尤其是快速变化的部分。
仍然是上一层的逼近系数。
1.3.2 多层小波分解
(1)多层小波分解思想
在多层小波分解中,分解过程是递归的。具体来说:
- 第0层:原始信号
通过尺度函数系数
和小波函数系数
滤波,得到第 1 层的逼近信息和细节信息。
- 第1层:从第0层得到的逼近信息(低频部分)继续进行滤波,得到第 2 层的逼近信息和细节信息。
- 以此类推,直到分解达到指定的层数
。
在分解过程中,每一层的逼近信息和细节信息都会在之后的层次中继续进行类似的操作,逼近信息逐步变得更加平滑,而细节信息则逐渐揭示出更高频的局部变化。
图5 小波多层分解结构图
(2)多层(三层)分解示例
- 第1层分解:原始信号
使用尺度函数滤波器
和小波函数滤波器
进行滤波,得到第1层的逼近信息
(低频部分)和细节信息
(高频部分)。
- 第2层分解:对第 1 层的逼近信息
进行相同的滤波,得到第2层的逼近信息
和细节信息
。
- 第3层分解:对第 2层的逼近信息
再次进行滤波,得到第3层的逼近信息
和细节信息
。
每一层的输入是上一层的逼近信息,对其进行滤波,分别通过尺度函数滤波器 hn 和小波函数滤波器
计算出新的逼近信息和细节信息。
直到达到指定的分解层数 ,即可得到多尺度分解的结果:
注意:分解的层数 决定了信号被分解为多少个尺度的逼近信息和细节信息。较高的层数可以提供更精细的信号表示,但也会增加计算复杂度。每分解一层,信号的时间分辨率减半。因此,分解的层数N通常受信号长度限制。
1.3.3 小波基的选择与特点
小波基的选择对于小波变换的效果影响很大。不同的小波基有不同的数学结构和性质,因此适用于不同类型的信号处理任务。小波基主要由尺度函数(low-pass filter)和小波函数(high-pass filter)组成。常见的小波基包括哈尔小波(Haar Wavelet)、道尔小波(Daubechies Wavelet)、Symlet小波等。
接下来,我们将详细讨论每个小波基的公式、特点,以及它们各自适用于哪些类型的信号处理任务。
(1)哈尔小波(Haar Wavelet)
- 公式与定义
哈尔小波是最简单的小波基,属于最基础的小波变换,它的尺度函数 和小波函数
在数学上定义如下:
尺度函数(母小波):
小波函数:
哈尔小波在时间-频率平面中提供了简单的离散化方式,是具有最简单结构的分解方式。它是一致不连续的小波,主要是通过一步跳跃式的变化来进行局部信息的提取。
- 适用场景与优缺点
1)适用场景:哈尔小波主要用于图像处理、信号压缩、数字图像和音频的初步处理等。因为其计算简便,所以经常用于一些实时处理系统。
2)优缺点:
优点:简单高效,计算速度快,易于实现。
缺点:对信号变化的表达能力差,不能很好地捕捉信号的平滑和细腻结构,尤其适合不连续或者具有显著跳变的信号。
(2)道尔小波(Daubechies Wavelet)
- 公式与定义
道尔小波是一类具有正交性的小波,具有更好的频率局部化特性。它们通过多项式形式定义,最常用的是道尔小波的第一种( ),(
小波实际上是哈尔小波),以及其后的几种(
,
…)。道尔小波的阶数(即小波函数的平滑程度)越高,信号的局部变化就越平滑,频率局部化性越好。
对于更高阶的小波(如 ),尺度函数和小波函数的定义更为复杂。举例来说,
小波的尺度函数
和小波函数
分别为:
尺度函数 :
小波函数 :
其中, 和
这里表示指示函数(indicator function),表示在区间[0,1]和[1,2]内,函数值为1,否则为0。
相比于 ,此时的小波有更强的平滑性和更高的频率分辨能力,适合于信号中的细节和复杂结构的提取。
- 适用场景与优缺点
1)适用场景:
信号处理:道尔小波特别适用于去噪、信号压缩和重建。
图像处理:特别是图像压缩算法中有广泛应用。
时频分析:对平滑的信号或带有一定平稳性的信号非常有效。
2)优缺点:
优点:平滑性较好,具有较强的时频局部化特性,适合平稳信号的处理。
缺点:计算相对复杂,需要更多的计算资源。
(3)Symlet 小波(Symlet Wavelet)
- 公式与定义
Symlet小波是道尔小波的一种变体,它通过进一步优化对称性来克服道尔小波在某些信号上产生的失真。Symlet小波同样是正交小波,并且它是对称的,这使得它在很多应用场景中更有优势,尤其在信号的时域重构中。
Symlet 小波可以通过以下关系来定义:
其中,
是尺度函数,决定信号的平滑部分。
是小波函数,捕捉信号的细节部分。
和
是滤波器的系数(具体系数值与具体的Symlet小波阶数有关)。
是滤波器的长度(通常是2或4,表示滤波器的阶数)。
- 以 Symlet-2 为例
Symlet 小波的阶数越高,其平滑性和对称性越好。以 Symlet-2 为例,Symlet-2(也称为 S2)的尺度函数和小波函数系数如下:
尺度函数系数 :
小波函数系数 :
Symlet-2 小波通过这些系数生成尺度函数和小波函数,进行时移和尺度缩放等操作。
- 适用场景与优缺点
1)适用场景:
Symlet-2小波适用于对信号对称性和平滑性要求较高的应用,如音频处理、图像分析和生物医学信号分析等。它特别适合处理平稳或复杂的信号,能够有效进行信号去噪、特征提取和压缩。
2)优缺点:
优点:
- 高对称性:Symlet 小波比 Daubechies 小波具有更好的对称性,这对于一些需要保留信号对称特征的应用非常有用,如音频、图像等。
- 平滑性:Symlet 小波的平滑度较高,适用于平稳信号和复杂信号的处理。
- 正交性:和 Daubechies 小波一样,Symlet 小波也保持了正交性,能够有效地分解和重构信号,适用于信号压缩、去噪等任务。
缺点:
- 计算复杂度较高:由于Symlet小波具有较高的对称性,它的计算复杂度通常要比其他低阶小波(如Haar小波)更高,因此在实时信号处理中可能需要更多的计算资源。
- 内存占用大、相对较慢的计算速度:由于Symlet小波的多项式阶数较高,使用较高阶的Symlet小波时,处理需要更多的内存和时间,尤其对于长时间序列信号。
(4)其他常见的小波基
除了上述几种小波,下面是一些其他常见的小波基类型:
- Coiflet 小波
特点:Coiflet小波提供了比Symlet更强的平滑性(连续导数),而且其在多尺度分析上表现出较强的稳定性。适用于高阶逼近和去噪。
适用场景:适合金融数据分析和高阶去噪。
- Meyer 小波
特点:Meyer小波是一种连续小波,它的尺度函数和小波函数在频率域上具有极好的局部化性质。适合平稳信号分析。
适用场景:信号的频域分析和时频表示。
- Biorthogonal 小波
特点:Biorthogonal小波具有非正交性,即它们的尺度函数和小波函数分别构成正交基,但两者不一定相同。适合需要对称性和高效计算的应用。
适用场景:适用于图像编码和数据压缩。
(5)小波基的选择总结
下面对小波基的选择进行总结。
表1 各小波基特点对比
小波基 | Daubechies | Biorthogonal | Coiflets | Symlets | Mexicanhat |
表示形式 | dbN | biorNr.Nd | CoifN | symN | mexh |
正交性 | 有 | 无 | 有 | 有 | 无 |
双正交性 | 有 | 有 | 有 | 有 | 无 |
紧支性 | 有 | 有 | 有 | 有 | 无 |
支撑长度 | 2N-1 | 重构:2Nr-1 分解:2Nd+1 | 6N-1 | 2N-1 | 有限长度 |
对称性 | 近似对称 | 不对称 | 近似对称 | 近似对称 | 对称 |
特点 | 时间分辨率和频率分辨率较好,适用于信号奇异点分析 | 易于重构,适合图像压缩和信号处理 | 具有较高的消失矩特性,适合瞬态信号分析 | 更接近对称,减少边界效应,适合多分辨率分析 | 光滑无振荡,适用于信号和图像的边缘检测 |
适用场景 | 图像处理、信号降噪与压缩 | 医学图像处理、指纹识别、数据压缩 | 瞬变信号分析、地震波信号分析 | 高频细节保留、信号分解 | 边缘检测、自然科学数据分析、模式识别 |
关于表1的补充说明:
- 正交性:是指小波基之间的内积为零,即它们是彼此“独立”的。这意味着小波基可以在信号分解和重构时避免冗余信息。正交小波可以将信号能量分布到不同频带,且不同频带之间没有相互干扰。适合信号分解、重构、压缩等应用。
- 双正交性:是指两个不同的小波基满足正交性,一个用于信号分解,另一个用于信号重构。双正交小波可以通过不同的小波基实现更灵活的信号分析和重构。它同时保留了正交小波的优点,并在某些方面提供更高效的处理能力(如更好的边界处理)。
- 紧支性:是指小波函数的非零值仅在有限的范围内存在,即小波函数的“支撑”区域是有限的。紧支性小波在计算时可以快速收敛,且在实际应用中计算效率高。紧支性的小波基适合处理具有局部特性的信号。
- 支撑长度:是指小波函数在时间域中非零值区域的长度。支撑长度越短,时间局部化越强,处理短时信号时更加精确。然而,支撑长度越短,频域局部化的能力可能会下降(时间-频率分辨率的权衡)。
- 对称性:是指小波基函数在时间域的对称程度。对称小波基在处理边界问题时可以减少失真或伪影。常见的小波基中,Mexicanhat是完全对称的,而Daubechies是近似对称的。
不同的小波基适用于不同的信号处理任务,选择合适的小波基可以提高分解和重构的效果。
1.4 小波重构
小波重构是小波变换的逆过程,即通过逼近信息和细节信息逐层恢复原始信号的过程。重构过程利用多尺度分析的分解结果(即逼近系数和细节系数)以及相应的小波基函数进行信号的还原。下面详细说明小波重构的原理、公式和步骤。
(1)小波重构公式
假设我们已经完成了 层小波分解,得到了每一层的逼近系数和细节系数。重构过程从第
层开始,逐层向上递归计算,最终恢复原始信号
。
- 逼近信息的重构
其中, 是尺度函数滤波器的重构系数,与
对应,滤波器之间满足正交性或准正交性条件,保证分解和重构的无损性。
是第
层的逼近信息。
- 细节信息的重构
其中, 是小波函数滤波器的重构系数,与
对应,
是第
层的细节信息。
- 总重构公式:逼近系数和细节系数的重构结果相加
从第 层开始逐层计算,每一层的逼近系数和细节系数被用于重构上一层的逼近系数。第
层的系数
通过第
层的
和
计算得到,直到回复原始信号。
(2)小波重构步骤
a)初始化
从小波分解的结果开始,准备好每一层的逼近系数 和细节系数
。
b)逐层重构
从第 层开始,逐层向上递归进行重构:
- 使用第
层的逼近信息
和细节信息
。
- 重复此过程,直到恢复到第0层,得到原始信号。
- 将
和
通过对应的重构滤波器
和
进行插值、滤波和加法,计算上一层的系数
。
c)重构完成
当重构到第0层时,累加所有分量即可得到重构信号 。
图6 小波重构结构图(与小波分解结构图一致,小波分解的逆过程)
(3)小波重构特点
a)完全重构:小波变换的正交性或准正交性保证了信号可以完全重构而无损。
b)局部重构:只用某些特定的逼近或细节信息,可以实现局部信号的重构,常用于压缩或降噪。
c)滤波器精度:重构质量与所使用的小波基、滤波器系数的精度密切相关。
1.4.1 小波分解与重构的关系
表2:小波分解与重构的关系
过程 | 输入 | 输出 | 滤波器 |
小波分解 | 原始信号 | 逼近系数 |
|
小波重构 |
| 原始信号 |
|
通过这种分解和重构的循环操作,小波变换能够有效提取信号的时频特性,并能完全还原信号。
1.5 小波去噪原理
小波去噪的基本原理是将信号通过小波变换分解到不同的频率成分上,然后对各个频率成分进行阈值处理,保留有用信号,去除噪声。
具体步骤如下:
(1)小波分解:使用小波变换将信号分解为不同的频率成分(逼近系数和细节系数)。低频部分(逼近系数)通常包含了基线漂移。
(2)阈值处理:通过设定阈值,去除低频分量中的噪声。阈值处理通常应用于小波系数,用硬阈值或软阈值来去除噪声。硬阈值是直接将小于阈值的系数置为零,而软阈值则是在硬阈值的基础上对大于阈值的系数进行缩减。
(3)小波重构:通过逆小波变换将去噪后的小波系数重构回原始信号。这样,去除基线漂移后的信号就能恢复为更接近原始的清晰信号。
1.5.1 硬阈值法(Hard Thresholding)
硬阈值法是一种简单的去噪方法。在硬阈值处理下:
(1)如果小波系数的绝对值大于某个设定的阈值,则保留该系数;
(2)如果小波系数的绝对值小于或等于阈值,则直接将其置为零。
具体公式:
其中, 是小波系数,
是经过硬阈值处理后的系数,
是设定的阈值。
硬阈值方法的优点是简单、直接,但它可能导致去噪后信号出现不连续性和突变,尤其在处理低幅信号时,容易丢失一些重要的细节信息。
1.5.2 软阈值法(Soft Thresholding)
软阈值法相较于硬阈值更加平滑。它不仅将小波系数中小于阈值的部分置为零,还对大于阈值的部分进行缩减。通过这种方式,软阈值避免了硬阈值中可能产生的不连续性问题,使得去噪后的信号更加平滑。
具体公式:
其中, 表示小波系数的符号函数,
是小波系数的绝对值,
是设定的阈值。
软阈值的优点是能平滑信号,减少硬阈值可能产生的“块状效应”,但它可能导致信号的一些细节丢失,因为它对所有系数进行了缩减。
2 基线漂移去噪与实现方法
2.1 实验数据
上述代码中的数据集来源于 MIT-BIH 心律失常数据库 (MIT-BIH Arrhythmia Database)中的患者记录。(具体描述见之前的专栏内容:「ECG信号处理-第一课——认识MIT-BIH数据库」,可以在我主页找到,也可以直接点击如下链接。)
「ECG信号处理-第一课——认识MIT-BIH数据库」2024年10月25日_mit-bih心律失常数据库-CSDN博客
2.2 结果展示与分析
下面,我们对MIT-BIH 心律失常数据库 (MIT-BIH Arrhythmia Database)中的记录进行算法验证,实验结果如下。
1、102记录:软阈值去噪效果更好的示例。
图7 硬阈值与软阈值去基线漂移结果(102记录)
分析:由上述结果可知,原信号中含有明显的基线漂移,硬阈值法基本去除了基线漂移,但是软阈值法的效果更好,滤波后的心电信号更加平滑。
图8 ECG信号基线漂移去除对比
分析:由上述结果可知,不同阈值方法与原始信号均有一定的差异,但软阈值与原始信号的差值较硬阈值更小。
2、113记录:硬阈值和软阈值去噪效果相当的示例。
图9 硬阈值与软阈值去基线漂移结果(113记录)
分析:由上述结果可知,硬阈值法与软阈值法的效果相当,都能较为明显的去除基线漂移。
图10 ECG信号基线漂移去除对比
分析:由上述结果可知,软阈值法、硬阈值法与原始信号的差异均很小且相当。
Tips:下一讲,我们将继续探讨,关于肌电干扰去噪与实现方法。
以上就是基线漂移去噪与实现方法(小波变换)的全部内容啦~
我们下期再见,拜拜(⭐v⭐) ~
(Ps:有代码实现需求,请见主页信息,谢谢支持!~)