1.“平面图G的对偶图为欧拉图”的充要条件是?
答:面的次数为偶数,因为只有这样才有G的对偶图的度数为偶,才符合欧拉图的定义。
2.哈密顿回路肯定无重边吧?
答:是的,根据哈密顿路和回路的概念或者直接就是哈密顿回路的概念可知。P119和P137
3.6阶树有多少个?
答:用枚举法,5条边,度的和为10。
2个1: 112222 1个
3个1: 111223 2个
4个1: 111124 1个
111133 1个
5个1: 112222 1个
4.无向完全图K6中有多少个12条边的非同构的生成子图是非平面图?
答:3,用俩极小非平面图往上加 ;做法是用k3,3,k5往上加边,则k3,3+3条就两种 ;k5+2条也就一种。课后题的变形(第10题)。关于解题画图过程中遇到同构问题,这里有:V1里加3,与v2里任意一点构成k4,剩下的两点不相邻。v1里加2,v2里加1,那么也可以从中找出一个k4,那么v1中两点和v2中两点构成k4,剩下两点分别在v1,v2中,是相邻的,所以不同构。
5. 非平面图一定有k33或者k5为子图么?
答:一定。
6.设G=<V,E>是无向连通图,G中至少有3个顶点。
证明:G中存在两个顶点,将它们删除后,图仍然是连通的。
答:连通图肯定有生成树,树肯定有两个叶子,把叶子节点去掉。
7.设G为n阶(n个顶点)连通的简单平面图且G中不含长度为3的圈(初级回路)试证明G中必有度数小于等于3的顶点。
答:m<2(n-2) 如果每个点度数大于等于4,m>=2n矛盾。m < l /( l-2) * n- 2;
2m >= 4r ;2m > = 4n ;相加得到n + r -m < 0 。