基于Aidlux平台的动态人脸识别AI应用

人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行面部识别的一系列相关技术,通过也叫做人像识别、面部识别。

 人脸识别整体流程:

 人脸检测+关键点定位:

人脸检测模型用于确定人脸在图像中的大小和位置,把真正的人脸区域从图像中裁剪出来,并准确定位脸部关键点的位置,便于后续的人脸特征分析和识别。

人脸预处理:

在动态人脸识别的全流程中,人脸图像预处理是比较重要的一个环节,根据各种场景进行对应的预处理操作等。由于人脸特征提取模型的数据集中大多都是经过矫正过的标准人脸,所以我们也需要将过滤后的人脸进行几何矫正,使其尽可能称为正面标准人脸。人脸图像预处理服务于特征提取,原始人脸图像由于光照、人头角度、噪声过大等原因无法直接用于特征提取,需要过滤加快流程速度或进行预处理。

人脸特征提取+比对:

人脸特征提取方法都是基于深度学习方法提出的,人脸特征提取性能的提高还主要体现在损失函数的设计上,选用好的损失函数,会对整个网络的优化具有导向性的作用。人脸对比是对比人脸库内的人脸,常用的表示两个向量相似度方法有欧式距离、余弦相似度、曼哈顿距离等。

目的:将人脸图片的纹理信息,转化为高维的特征向量,对待识别的人脸进行建模,方便与后续人脸库中的特征向量进行比对,最终找到距离最近的一个库的人脸。

一、Retinaface训练

Retinaface是借助特征金字塔FPN+多任务学习设置多任务loss参数来提升人脸识别的精度。数据集下载网址和标签文件下载链接在本文末尾。

从github中下载pytorch版本的源码:Pytorch_Retinaface。

GitHub - biubug6/Pytorch_Retinaface: Retin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值