在设备自动化与智能化转型的浪潮下,企业每天都会产生海量时序数据:如设备运行状态数据、日志记录数据、环境监测数据等,时序数据如脱缰野马般持续疯长,数据管理却陷入混乱无序的泥沼。爆炸式增长的数据量和难以凸显的数据价值之间的尖锐矛盾,已成为当下制约工业企业发展的重大瓶颈。
时序数据管理技术难度大、信息密度低,主要面临以下问题:
• 采集传输协议类型繁杂,规范不一,数据解析难、汇聚难;
• PB级的数据量&TB级的数据增量,管理需求各异,数据存储难、成本高;
• 设备供应商不同、型号不同,测点信息不一致、应用模型复用度低;
• 传输过程中数据缺失、异常,数据质量差、应用结果准确度低;
• …
曾被时序数据难题缠身,某企业却借生产时序数据治理“逆风翻盘”,年创效超3300万!这背后究竟藏着怎样的治理秘籍?本期小编带你一探究竟!
数据从“负债”到“金矿”的治理之路
01、采集从“单协慢采”到“多协快采”
不同业务、不同供应商提供的采集协议类型繁杂,时序数据解析在技术侧面临深层次技术壁垒,在时间维度上面临严苛时效与紧迫周期的双重考验。基于统一的数据采集平台,兼容多类型协议和多元时序数据库,高效实现各协议数据的采集和解析。
02、存储从“全局全量”到“分级分类”
基于时序数据的“重量级”,为了满足各业务层对时序数据的应用诉求,将“全局全量存储”升级为“数据分级分类存储”。通过深入分析企业的管理模式与数据传输和应用架构,构建“轻量级”、“便捷式”、“随用随取”的存储机制,实现存储设备和成本的合理规划及利用,高效敏捷响应全业务层级的数据需求。
03、设备从“命名混乱”到“统一标准”
由于设备采购批次、管理业务单位不同,存在同一种类设备供应商、型号不一致,以及同一型号设备测点信息不同的情况。通过建设数据标准和物联模型,实现设备标准、测点标准以及其他基础台账标准的统一,并结合企业的管理现状和管理架构,明确测点的编码规范,在企业内部形成一套全局性、可扩展、符合业务的编码体系。
04、数据从“传输异常”到“智能修复”
时序数据在采集和传输过程中可能存在数据缺失、数据越位以及数据卡死恒定值等异常情况。针对时序数据异常难题,创新引入前沿人工智能技术,搭建智能数据治理中枢,开创多模态协同的数据洞察方法体系,运用深度学习、强化学习等算法对异常数据进行智能分析、预测与修复,打破数据质量瓶颈,构建一套具备高容错性、强一致性的高可用数据体系。
05、数据从“贫瘠资源”到“富裕资产”
时序数据缺乏数据应用,等同于亿万宝藏未被发掘。在工业领域中,时序数据除日常业务监控以外,还可应用于数据查询和分析预测两大核心领域。通过业务侧和管理侧的双重视角,基于时序数据的分析结果,优化业务流程,提升业务效能,驱动时序数据在故障预测预警、自动化巡检等场景中释放长效价值。
该方案已在某企业“落地开花”,在应用实践的“沃土”中结出了累累硕果。显著成效如下:
01、数据采集接入
已完成总计1600余万个测点数据接入,涉及5个通用协议、10+工业协议。
02、数据存储优化
全集团存储成本降低30%,冗余数据优化80%,实现降本增效双赢。
03、数据标准化
实现共计2000余万测点的标准和编码统一,为时序数据应用提供规范化的底座。
04、数据质量提升
时序数据异常率下降60%,各类分析和应用的准确率提升40%。
05、数据应用成果
基于时序数据,研发温度异常、传感器异常等20余个预测预警模型,准确度高达85%。
时序数据治理不是成本,而是战略投资
时序数据与离线数据的一体化治理,不仅是技术层面的升级,更是进一步推动企业数字化、智能化转型的核心利剑。通过时序数据标准化、质量规范化,以应用场景驱动数据释放潜能,让时序数据从“负债”变为“金矿”,真正赋能生产提效、风险可控、决策科学化。
美林数据以“采存管治用”全链路方案,助力企业从海量时序数据中掘金,以数据智能驱动业务增长,领跑数字化转型新赛道!