【卷积神经网络】—— 卷积神经网络介绍及案例

深层的神经网络

深度学习网络与更常见的单一隐藏层神经网络的区别在于深度,深度学习网络中,每一个节点层在前一层输出的基础上学习识别一组特定的特征。随着神经网络深度增加,节点所能识别的特征也就越来越复杂。

卷积神经网络介绍:一文让你理解什么是卷积神经网络 - 简书

卷积神经网络

1、卷积神经网络的层级结构

  • 数据输入层/ Input layer
  • 卷积计算层/ CONV layer
  • ReLU激励层 / ReLU layer
  • 池化层 / Pooling layer
  • 全连接层 / FC layer

全连接神经网络的缺点:

1、参数太多,在cifar-10的数据集中,只有32*32*3,就会有这么多权重,如果说更大的图片,比如200*200*3就需要120000多个,这完全是浪费

2、没有利用像素之间的位置信息,对于图像识别任务来说,每个像素与周围的像素都是联系比较紧密的。

3、层数限制(层数多了,反而可能效果不好)

神经网络的基本组成包括输入层隐藏层输出层。而卷积神经网络的特点在于隐藏层分为卷积层池化层(pooling layer,又叫下采样层)

卷积层:通过在原始图像上平移来提取特征

池化层:通过特征后稀疏参数来减少学习的参数,降低网络的复杂度(最大池化和平均池化)

2、卷积层

卷积层的零填充:

卷积核在提取特征映射时的动作称之为padding(零填充),由于移动步长不一定能整出整张图的像素宽度。其中有两种方式,SAME和VALID。

  • SAME:越过边缘取样,取样的面积和输入图像的像素宽度一致。
  • VALID:不越过边缘取样,取样的面积小于输入的图像的像素宽度

下面的动态图形象地展示了卷积层的计算过程

结论

  • 大小表示方式 [长, 宽, 通道数]
  • 偏置数和filter个数相等
  • filter个数和最后输出的通道数相等
  • 上图中的filter是2,相当于有2个人去观察5*5*3的图片(3通道) ,每个filter进行内积之和加上偏置得出一个结果。最后形成2个结果(2个通道)

怎么计算卷积输出体积大小

  • 输入体积大小 H1 * W1 * D1
  • 四个超参数:
    • Filter数量 K
    • Filter大小 F
    • 步长 S
    • 零填充大小 P
  • 输出体积大小 H2 * W2 * D2
    • H2 = (H1 - F + 2P)/S + 1
    • W2 = (W1 - F + 2P)/S + 1
    • D2 = K

例如:输入的图片的大小为 28 * 28 * 1(长,宽,通道数),过滤器的大小为3 * 3,有32个,步长=1,填充P=1

H2 = (28 -

  • 2
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值